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Understanding Dynamical Biological Processes is Crucial for Life Science 

• Cellular dynamics reveals how cells grow, divide, and differentiate 

• A biological system is inherently dynamic at different levels

• Understanding cell-level dynamics is key to analyze biological systems
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(Sur, et.al., Dev. Cell, 2023)
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Temporal scRNA-seq Offers High-Resolution Insights about Cellular 

Dynamics

• Single-cell RNA sequencing (scRNA-seq) technique measures gene expression 

levels within individual cells
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Temporal scRNA-seq Offers High-Resolution Insights about Cellular 

Dynamics

4*figure adopted from (Sur, et.al., Dev. Cell, 2023)
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• Collecting scRNA-seq data at multiple timepoints/stages allows us to observe gene 

expression dynamics



But Temporal Data Have Limitations Due to Expensive and Laborious 

Experiments

• Because expenditures of time/labor/money, researchers generally profile gene 

expression at sparsely spaced discrete time

• So existing datasets can lose information between two consecutive discrete 

timepoints

5
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(Saelens, et.al., Nat. Biotechnol, 2019)

(Ding, et.al., Nat. Rev. Genet, 2022)
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But Temporal Data Have Limitations Due to Expensive and Laborious 

Experiments

• Goal: predict realistic samples at any timepoint to enable & improve temporal 

downstream analysis
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Developing Such a Generative Model has Several Challenges

• Challenge I: lack of cell correspondence between timepoints 
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• Challenge II: noisy and high-dimensional data

• Challenge III: capture cellular dynamics when distribution shifts exist



Challenge I: Lack of Cell Correspondence between Timepoints

• Different set of cells are measured at each timepoint (destruction of cells during scRNA)

• Solution: cell alignment with optimal transport

(https://www.wias-berlin.de/people/dvureche/)

Transport planTransport cost    

Mapping masses of two distributions 
Pair-wise distance between masses of two distributions

• Optimal transport find the best cell correspondence between two set of cells
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(Schiebinger, et.al., Cell, 2019) (Forrow and Schiebinger, Nat. Commun., 2021)



Developing Such a Generative Model has Several Challenges

• Challenge I: lack of cell correspondence between timepoints 
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• Challenge II: noisy and high-dimensional data

• Challenge III: capture cellular dynamics when distribution shifts exist

Solution: cell alignment with optimal transport



Challenge II: Noisy and High-Dimensional Data

• Due to high sparsity and high dimensionality of scRNA-seq data, we always model 

cell dynamics in low-dimensional space

• Many previous works use Principal Component Analysis 

(PCA), but it has the overcrowding issue

(Tran, et.al., Genome Biol., 2020)

• Solution: use Variational Auto-Encoder (VAE) to 

capture complex cell relationships
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Challenge II: Noisy and High-Dimensional Data (cont.)

• VAE has superior performance on capturing cell type variations  
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o 𝐗 ∈ ℝ𝑛×𝑝 : gene expression of 𝑛 cells and 𝑝 genes

o learn 𝑑-dimensional latent variables 𝐙 ∈ ℝ𝑛×𝑑 (𝑑 ≪ 𝑝)

• Recent works use VAE to capture complex cell relationships

(Tong, et. al., ICML, 2020)

(Huguet, et. al., NeurIPS, 2022)

(Yeo, et. al., Nat. Commun., 2021)



Developing Such a Generative Model has Several Challenges

• Challenge I: lack of cell correspondence between timepoints 
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• Challenge II: noisy and high-dimensional data

• Challenge III: capture cellular dynamics when distribution shifts exist

Solution: cell alignment with optimal transport

Solution: use VAE for dimensionality reduction



Challenge III: Capture Cellular Dynamics when Distribution Shifts Exist
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• However, the cell path/cellular dynamics are not naturally defined in VAE latent space

(Connor et.al., ICML, 2021)

• Previous works adopts differential equation in VAE latent space to capture cell dynamics

Latent Space Latent Spacestep-wise 

forwarding



Challenge III: Capture Cellular Dynamics when Distribution Shifts Exist (cont.)

• Latent space ignores cellular dynamic → struggle to deal with distribution shift 

(credit to Evidently AI)

• Our solution: adjust the latent space with cellular dynamics captured in modelling
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o especially when predicting timepoints beyond the measured range (i.e., extrapolations)

• Unsolved problem: fails on extrapolations & interpolation w/ large shifts



Developing Such a Generative Model has Several Challenges

• Challenge I: lack of cell correspondence between timepoints 
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• Challenge II: noisy and high-dimensional data

• Challenge III: capture cellular dynamics when distribution shifts exist

Solution: cell alignment with optimal transport

Solution: use VAE for dimensionality reduction

Unsolved in previous works

Solution in our work: adjust the latent space with cellular dynamics



Our Method: single-cell Neural Ordinary Differential Equation (scNODE)

• Step I: uses VAE to learn complex low-dimensional space 

o gene expression         at measured timepoints

o learn latent space with all observed cells

o pre-train a low-dimensional latent space to capture complex cell relationships

16



initial 

condition

• Step II: uses neural Ordinary Differential Equation (ODE) to model cell dynamics
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Our Method: single-cell Neural Ordinary Differential Equation (scNODE)



predict cell states 

step-wise
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neural network computing cell velocities

Our Method: single-cell Neural Ordinary Differential Equation (scNODE)

• Step II: uses neural Ordinary Differential Equation (ODE) to model cell dynamics



project back to gene space
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Our Method: single-cell Neural Ordinary Differential Equation (scNODE)

• Step II: uses neural Ordinary Differential Equation (ODE) to model cell dynamics



• Loss function: reconstruction loss + dynamic regularization 

• Reconstruction loss:

o Wasserstein distance between ground truth & predictions

o Use optimal transport distance as reconstruction loss
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Our Method: single-cell Neural Ordinary Differential Equation (scNODE)



• Loss function: reconstruction loss + dynamic regularization 

o Enforces latent space to incorporate dynamics learned by neural ODE
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• Dynamic regularization: 

ODE Latent (dynamics) VAE Latent

integrate

Our Method: single-cell Neural Ordinary Differential Equation (scNODE)



• Step II: ODE models cell dynamics
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• Step I: VAE captures complex 

cell relationships

o dynamic regularization

o capture long-term dynamics

o robust against distribution shifts

Our Method: single-cell Neural Ordinary Differential Equation (scNODE)



Experiment Setup

• Dataset: three scRNA-seq datasets

• Setup: remove several timepoints → recover these left-out observations 

training timepoints

testing (left-out) timepointsinterpolation + extrapolation 
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• Metric: Wasserstein distance between predictions and ground truth (lower is better)
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• Baselines: two state-of-the-art methods

o MIOFlow (Huguet, et. al., NeurIPS, 2022)

o PRESCIENT (Yeo, et. al., Nat. Commun., 2021)

Experiment Setup (cont.)



Experiment I: scNODE can Accurately Predict Gene Expression at 

Unobserved Timepoints 

25

scNODE consistently outperforms all baselines in predicting gene expression

ZB DR

SC
best performance

second best performance



Experiment II: scNODE is More Robust Against Distribution Shift

• Distribution shift: averaged pairwise Euclidian distance between training & testing tps

o higher value indicates a more significant distribution shift

• scNODE improvement: diff. between performance of scNODE & second-best baseline

o higher value indicates that scNODE is more robust
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scNODE is more robust against the distribution shift

27

more impv.

higher shift

Experiment II: scNODE is More Robust Against Distribution Shift



Experiment III: scNODE’s Interpretable Latent Space Assists with Analysis

• We take the latent space learned by scNODE on ZB dataset  
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Experiment III: scNODE’s Interpretable Latent Space Assists with Analysis

• We take the latent space learned by scNODE on ZB dataset  
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Experiment III: scNODE’s Interpretable Latent Space Assists with Analysis

• Construct cell transition path
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Experiment III: scNODE’s Interpretable Latent Space Assists with Analysis

• Detect differentially expressed genes for each path 
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Experiment III: scNODE’s Interpretable Latent Space Assists with Analysis

• Conduct in silico perturbation

scNODE predicts 

future states
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Experiment III: scNODE’s Interpretable Latent Space Assists with Analysis

• Conduct in silico perturbation



• We take the latent space learned by scNODE on ZB dataset  

• Construct cell transition path

• Detect differently expressed genes for each cell transition path

• In silico perturbation 

scNODE latent space is interpretable & captures biological information  
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Experiment III: scNODE’s Interpretable Latent Space Assists with Analysis



Conclusion

• scNODE is robust against distribution shifts 

• scNODE accurately predicts gene expression

• scNODE assists with temporal downstream analysis

• Extension:

o Model dynamics from temporal multi-omic data (e.g., transcriptomic and 

chromatin accessibility)

o Translate between two omics at any timepoint 
COME BY OUR POSTER

35

(Poster Session 1, P353)
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Conclusion

• scNODE is robust against distribution shifts 

• scNODE accurately predicts gene expression

• scNODE assists with temporal downstream analysis
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o Model dynamics from temporal multi-omic data (e.g., transcriptomic and 

chromatin accessibility)

o Translate between two omics at any timepoint 
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(Poster Session 1, P353)
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