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Dynamics, The “Hidden Law” of Biology

Cell Differentiation

(figure adopted from [Haywood, J Appl Neurosci, 2024]) (figure adopted from Wikipedia & Daniocell)

Embryogenesis
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Single-Cell Technology Offer High-Resolution Cell-Level Insights 
about Heterogeneous Biological Systems

Tissue Dissociation Single Cell Sequencing
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Temporally Resolved Single-Cell Data Offers Critical Dimension for 
Understanding Dynamics

[Sur, et.al., Dev. Cell, 2023]

timepointst=0 t=1 t=T

zygote juvenile(after fertilization)

zebrafish embryogenesis

dynamics
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Advances in Technology Enable Multi-Modal Views of Single Cells

transcription translation

Cell

Chromosome
DNA RNA Protein

Gene Expression Chromatin Accessibility

nucleus chromatin
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Each Modality Has Inherent Noises & Biases

[Lähnemann, et.al., Gen. Bio., 2020]

Gene Expression Chromatin Accessibility

[Chen, et.al., Gen. Bio., 2019]

+ diverse cell population
- sensitive to technical/biological biases

+ regulatory landscape 
- less cell-type-specific

(e.g., mRNA degradation) (e.g., robust to mRNA level)

joint analysis is important 
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Integrating Multiple Modalities Provides Comprehensive Cell Profile

• Integration between different single-cell modalities

a dog running through 
the snow, with a frisbee

comprehensive 
representation of object

integration+

Image

Text

(modality 1)

(modality 2)

Gene Expression

Chromatin Accessibility

Cell

integration comprehensive 
map of cell

(modality 1)

(modality 2)
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Unaligned Datasets Pose Extra Challenges

Gene Expression Chromatin Accessibility

Co-Assay Data

Image Text

Image-Text Pair

a dog running through 
the snow, with a frisbee

“dog”
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Unaligned Datasets Pose Extra Challenges (cont.)

• Limits co-assay scalability across 
development stages and complex 
tissues

Gene Expression Chromatin Accessibility

Co-Assay Data

[Lim et. al., EMM, 2024]

Existing Co-Assay Technologies

limited to certain modalities 
expensive & time-consuming
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Unaligned Datasets Pose Extra Challenges (cont.)

• Majority of temporal multi-modal datasets remain unaligned across modalities

Gene Expression Chromatin Accessibility

Unaligned Data

• Each modality is profiled on different sets of cells
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Unaligned Datasets Pose Extra Challenges (cont.)
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• Different set of cells are measured at each timepoint (destruction of single-cell tech.)



Unaligned Datasets Pose Extra Challenges (cont.)

Problem I: unsupervised cell correspondence across modalities & timepoints 

…… ………… ……

Single Cells

Gene Expression

Chromatin 
Accessibility

unalignedunaligned
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• Different set of cells are measured at each timepoint (destruction of single-cell tech.)



• Solution: cell alignment with optimal transport

(https://www.wias-berlin.de/people/dvureche/)

Transport planTransport cost    

Mapping masses of two distributions Pair-wise distance between masses of two distributions

• Optimal transport find the best cell correspondence between two set of cells

[Schiebinger, et.al., Cell, 2019] [Forrow and Schiebinger, Nat. Commun., 2021] 13

• Problem I: unsupervised cell correspondence across modalities & timepoints

Unsupervised Cell Alignment Through Optimal Transport



Unsupervised Cell Alignment Through Optimal Transport

• Problem I: unsupervised cell correspondence across modalities & timepoints 

(https://www.wias-berlin.de/people/dvureche/)

Transport planTransport cost    

Mapping masses of two distributions Pair-wise distance between masses of two distributions

different modality has different feature space
distance computation is inapplicable
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• Solution: cell alignment with optimal transport

[Schiebinger, et.al., Cell, 2019] [Forrow and Schiebinger, Nat. Commun., 2021]



• We adopt Gromov-Wasserstein (GW) optimal transport to align cells across modalities

o Step 1: compute pair-wise 
distance within each modality

Unsupervised Cell Alignment Through Optimal Transport (cont.)

(modality 1) (modality 2)
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• We adopt Gromov-Wasserstein (GW) optimal transport

o Step 1: compute pair-wise 
distance within each modality

o Step 2: align two cells if they 
have similar local structures

Unsupervised Cell Alignment Through Optimal Transport (cont.)

(modality 1) (modality 2)

Transport plan
Mapping cells of two modalities 
while keeping local geometry

m
od

al
it
y 

1

modality 2

local structure 
of modality 1

local structure 
of modality 2 16



Existing Aligning Methods Overlook Underlying Cellular Dynamics
• Previous integration methods focus on separating different cell types and ignore the cell 

transition dynamics

Problem II: cellular 
dynamics are ignored 
during integration

cell type separations cell developmental trajectories+

Integration of a SCOTv2
[Demetci,, et. al., J. Comput. Biol., 2022]

17

Gene expression (mod. 1) 
cell representation

Chromatin accessibility (mod. 2) 
cell representation



• Adopt differential equation in latent space to capture cell dynamics

Latent Space Latent Spacestep-wise 
forwarding

18

Existing Aligning Methods Overlook Underlying Cellular Dynamics 
(cont.)

• Problem II: cellular dynamics are ignored during integration
• Solution: incorporate dynamics with differential equations

(unsolved in previous works)

• Adjust the latent space with cellular dynamics captured in modelling



Limitations of Existing Works

• Problem I: unsupervised cell correspondence across modalities & timepoints 

• Problem II: cellular dynamics are ignored during integration

Solution: cell alignment with Gromov-Wasserstein Optimal Transport 

Unsolved in previous works

Solution in our work: adjust the latent space with cellular dynamics
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• Goal: during multi-modal single-cell integration, preserve both

Limitations of Existing Works (cont.)

o local cell relationships (e.g., cell type distinctions) 

o global cellular dynamics (e.g., complex developmental trajectories) 

Joint Latent Space
unsupervised
integration

timepoint

scATAC

...

...

u
n
al

ig
n
ed

 
ce

ll
s

local cell cluster

global cell dynamic
&

Cell Type

Timepoint

Modality

(scRNA-seq: gene expression; scATAC-seq: chromatin accessibility)
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment

exact GW is NP-hard

expensive for large-scale single-cell datalocal structure 
of RNA cells

local structure 
of ATAC cells

R
N

A

ATAC

alignment score

ATAC

Transport plan
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment

divide-and-conquer strategy

R
N

A

ATAC

alignment score

ATAC

Transport plan
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment

global alignment

distance of 
representative 

points 

representative points
R

N
A

ATAC

alignment score

ATAC

Transport plan
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment

local alignment

R
N

A

ATAC

alignment score

ATAC

Transport plan
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment

overall alignment = 

R
N

A

ATAC

alignment score

ATAC

Transport plan

significantly reduce time costs
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step II: mapping multi-modal cell profile to the joint latent space

Joint Latent Space

local cell cluster
global cell dynamic

Assumption: biologically similar cells, despite being 
measured in different modalities, should stay close

26



initial 
condition
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step III: incorporate cell dynamics with neural Ordinary Differential Equation (ODE)



predict cell states 
step-wise

neural network computing cell velocities
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step III: incorporate cell dynamics with neural Ordinary Differential Equation (ODE)



project back to gene 
expression or chromatin 
accessibility
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step III: incorporate cell dynamics with neural Ordinary Differential Equation (ODE)

(independent decoders)



• Loss function: reconstruction loss + dynamic regularization 

• Reconstruction loss:

o Wasserstein distance between ground truth & predictions

o Use optimal transport distance as reconstruction loss

tr
ue

 d
at

a

predictions
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

for RNA

for ATAC



• Loss function: reconstruction loss + dynamic regularization 

o Enforces latent space to incorporate dynamics learned by neural ODE
• Dynamic regularization: 

ODE Latent (dynamics)

incorporate
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

Encoder Latent



Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

• Step III: incorporate cell dynamics with neural Ordinary Differential Equation (ODE)

Joint Latent Space
(w/ dynamics)

local cell cluster
global cell dynamic

( Loss function: reconstruction loss + dynamic regularization )
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Our Method: single-cell Multi-Modal Neural Ordinary Differential Equation 
(scMultiNODE)

R
N

A

ATAC

alignment score

ATAC

unsupervised alignment
QGW optimal transport

(Step I)

Joint Latent Space

local cell cluster
global cell dynamic

minimize distance
between aligned cells

(Step II)

Joint Latent Space
(w/ dynamics)

local cell cluster
global cell dynamic

incorporating cell dynamics
with neural ODE

(Step III)
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Experiment Setup
• Dataset: six multi-modal single-cell datasets

• Setup: temporally resolved multi-modal single-cell data integration

Multi-Modal Single-Cell Data

scATAC
at Multiple Timepoints

Cell Type

Timepoint

Modality

Co-assay datasets: HC, HO
Unaligned datasets: DR, MN, ZB, AM

Integrations
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Experiment Setup
• Evaluation:

• Baselines: six state-of-the-art methods 

o SCOTv1 [Demetci,, et. al., J. Comput. Biol., 2022]

o SCOTv2 [Demetci,, et. al., J. Comput. Biol., 2022]

o Pamona [Cao, et. al., Bioinformatics, 2022]

o UnionCom [Cao, et. al., Bioinformatics, 2020]

o uniport [Cao, et. al., Nat. Comm., 2022]

o Seurat [Hao, et. al., Nat. Biotech., 2024]

Modality Integration

SCC, FOSCTTM, 
Neighbor Overlap, Batch Entropy

Cell Label Transfer

LTA-type

Cell Type Preservation

NMI

Cell Dynamics
LTA-time

time correlation
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Experiment I: scMultiNODE captures cellular developmental dynamics
during multi-modal integration
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Experiment I: scMultiNODE captures cellular developmental dynamics
during multi-modal integration (cont.)

(integration performance) (preservation of dynamics)

• Human Cortex (HC) and Human Organoid (HO) as examples
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Experiment I: scMultiNODE captures cellular developmental dynamics
during multi-modal integration (cont.)

(integration performance) (preservation of dynamics)

scMultiNODE consistently outperforms all baselines in 
uncovering cellular dynamics, while achieves good integration

• Human Cortex (HC) and Human Organoid (HO) as examples
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Experiment II: scMultiNODE’s latent space preserves multifurcating 
cell development trajectories

• Setup: predict cell pseudotime in the joint latent space

Multi-Modal Single-Cell Data

scATAC
at Multiple Timepoints

Cell Type

Timepoint

Modality

Co-assay datasets: HC, HO
Unaligned datasets: DR, MN, ZB, AM

Integrations

P
seudotim

e

Cell Pseudotime

 

Monocle3

(basic for most cell 
trajectory analyses)
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Experiment II: scMultiNODE’s latent space preserves multifurcating 
cell development trajectories (cont.)

• Test on human brain cortex data

RG

EN
fetal-early

EN
fetal-late

EN

IPC

IN fetal

IN-mge
IN-cge

OPC

Oligodendrocyte

Reference Cell Lineage

P
seudotim

e

Cell Pseudotime

 

Spearman Correlation

evaluate consistency
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Experiment II: scMultiNODE’s latent space preserves multifurcating 
cell development trajectories (cont.)

• Test on human brain cortex data

RG

EN
fetal-early

EN
fetal-late

EN

IPC

IN fetal

IN-mge
IN-cge

OPC

Oligodendrocyte

Reference Cell Lineage

Spearman Correlation (↑)

scNODE (RNA)
scNODE (ATAC)

ATAC diminishes cell trajectories

41

(scNODE: single-modal dynamic modelling)

Single-modal trajectory

[Zhang,, et. al., Bioinformatics., 2024]



Experiment II: scMultiNODE’s latent space preserves multifurcating 
cell development trajectories (cont.)

• Test on human brain cortex data

RG

EN
fetal-early

EN
fetal-late

EN

IPC

IN fetal

IN-mge
IN-cge

OPC

Oligodendrocyte

Reference Cell Lineage

previous integration methods lose cell trajectories
42

Integration vs. Single-modal trajectory

Spearman Correlation (↑)

scNODE (RNA)
scNODE (ATAC)



Experiment II: scMultiNODE’s latent space preserves multifurcating 
cell development trajectories (cont.)

• Test on human brain cortex data

RG

EN
fetal-early

EN
fetal-late

EN

IPC

IN fetal

IN-mge
IN-cge

OPC

Oligodendrocyte

Reference Cell Lineage

outperforms other multi-integration methods 
on capturing complex cell trajectories

Spearman Correlation (↑)

Our vs. other integrations
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Experiment II: scMultiNODE’s latent space preserves multifurcating 
cell development trajectories (cont.)

• Test on human brain cortex data

RG

EN
fetal-early

EN
fetal-late

EN

IPC

IN fetal

IN-mge
IN-cge

OPC

Oligodendrocyte

Reference Cell Lineage Our vs. single-modal trajectory

Spearman Correlation (↑)

scMultiNODE
scNODE (RNA)

scNODE (ATAC)

Spearman Correlation (↑)

Our vs. other integrations
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Experiment II: scMultiNODE’s latent space preserves multifurcating 
cell development trajectories (cont.)

• Test on human brain cortex data

RG

EN
fetal-early

EN
fetal-late

EN

IPC

IN fetal

IN-mge
IN-cge

OPC

Oligodendrocyte

Reference Cell Lineage Our vs. single-modal trajectory

Spearman Correlation (↑)

scMultiNODE
scNODE (RNA)

scNODE (ATAC)

Spearman Correlation (↑)

Our vs. other integrations

scMultiNODE produces biologically meaningful cell trajectories across 
complex and divergent lineages

45



Experiment III: scMultiNODE enables germ layer label transfer across 
modalities

• Setup: germ layer label transfer across  modalities

46

RNA w/ labels ATAC w/o labels

Multi-Modal Integration Space

train classifier 
on RNA

predict germ layer 
labels on ATAC

Random Forest 
classifer

ATAC w/ predicted labels

• Evaluation: marker gene expression across predicted germ layer groups 

o find marker genes of each germ layer 
group from RNA modality

o check marker gene expression in ATAC 
modality with predicted labels

G
er

m
 L

ay
er

 G
ro

up

Marker Gene

Expectation: marker genre 
only expressed in the 
corresponding group



Experiment III: scMultiNODE enables germ layer label transfer across 
modalities
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• Result on the Drosophila embryogenesis data



Experiment III: scMultiNODE enables germ layer label transfer across 
modalities
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• Result on the Drosophila embryogenesis data

scMultiNODE enables accurate cross-modal label transfer



Takeaways

• scMultiNODE captures cellular dynamic while achieving good multi-modal integration

• scMultiNODE assists downstream analysis, including trajectory analysis and cross-
modal label transfer

Jiaqi Zhang, Manav Chakravarthy, Ritambhara Singh,

“scMultiNODE: Integrative Model for Multi-Modal Temporal Single-Cell Data”,

bioRxiv

Code availability: github.com/rsinghlab/scMultiNODE
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Paper & Codes

https://github.com/rsinghlab/scMultiNODE
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