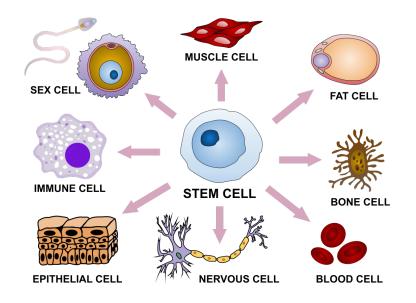


scMultiNODE: Integrative and Scalable Framework for Multi-Modal Temporal Single-Cell Data

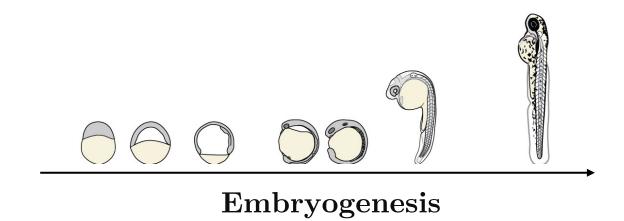
Jiaqi Zhang

Department of Computer Science Brown University

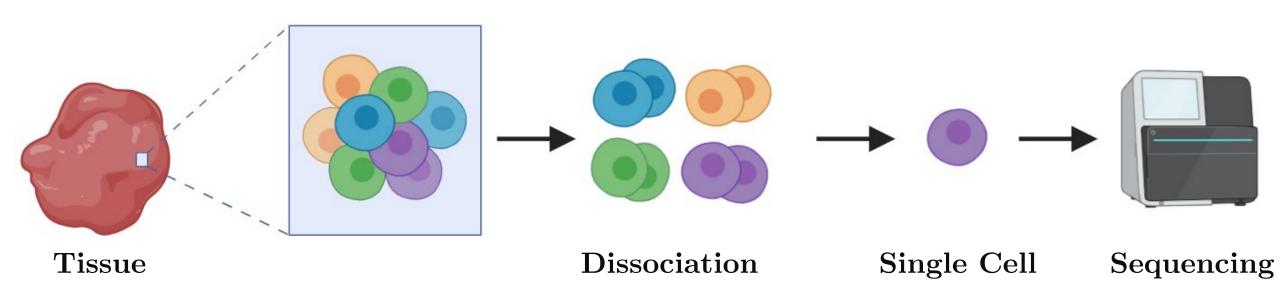
Dynamics, The "Hidden Law" of Biology



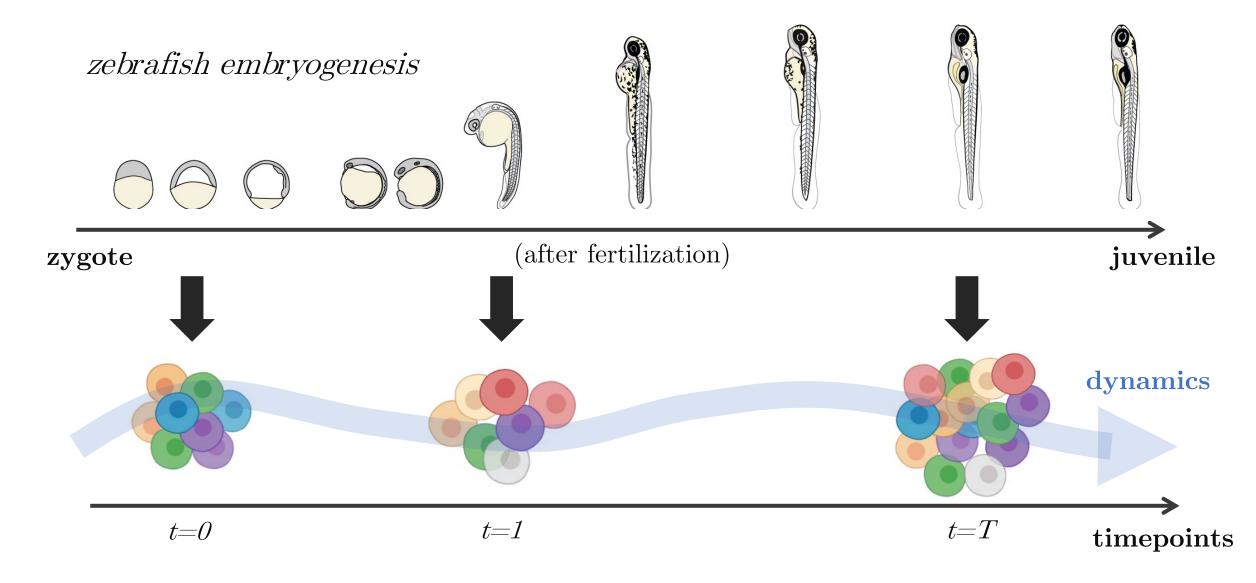
Cell Differentiation



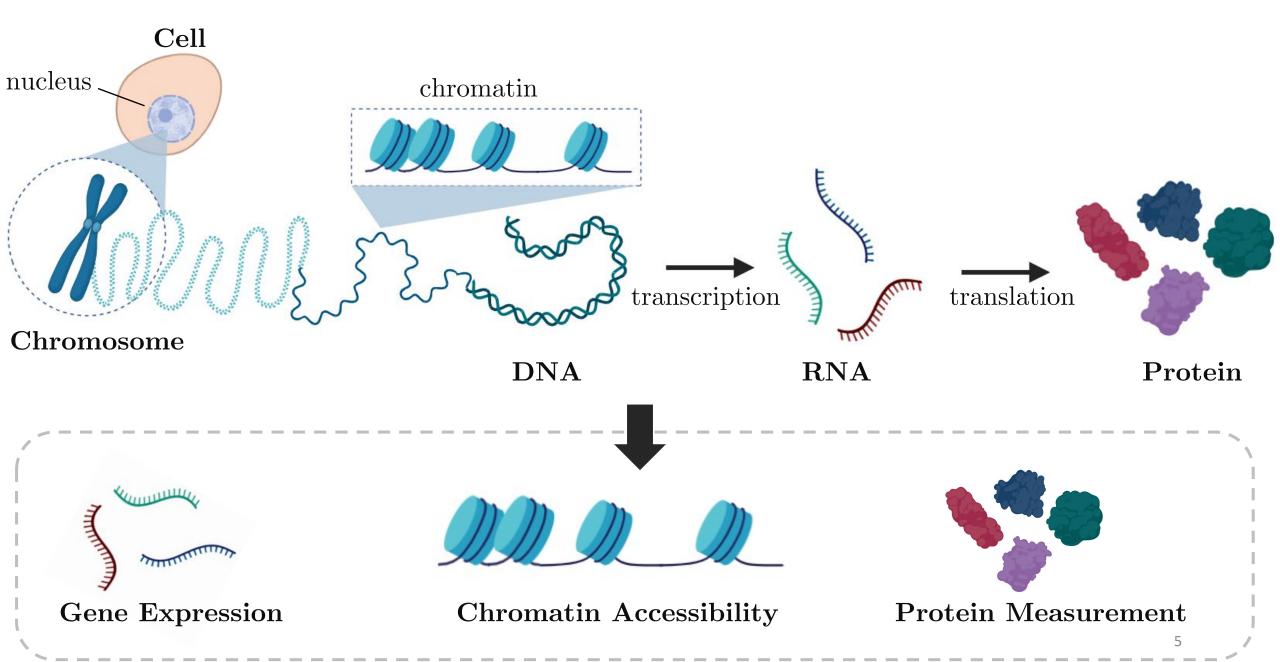
Single-Cell Technology Offer High-Resolution Cell-Level Insights about Heterogeneous Biological Systems



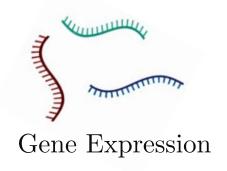
Temporally Resolved Single-Cell Data Offers Critical Dimension for Understanding Dynamics

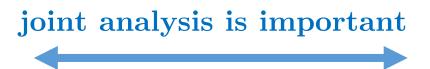


Advances in Technology Enable Multi-Modal Views of Single Cells



Each Modality Has Inherent Noises & Biases



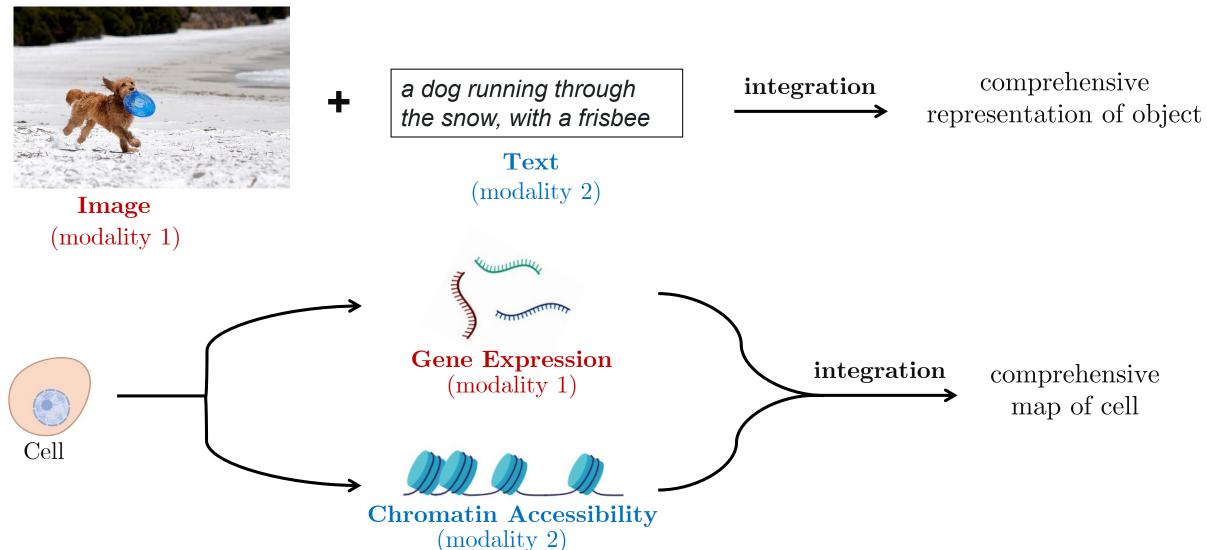


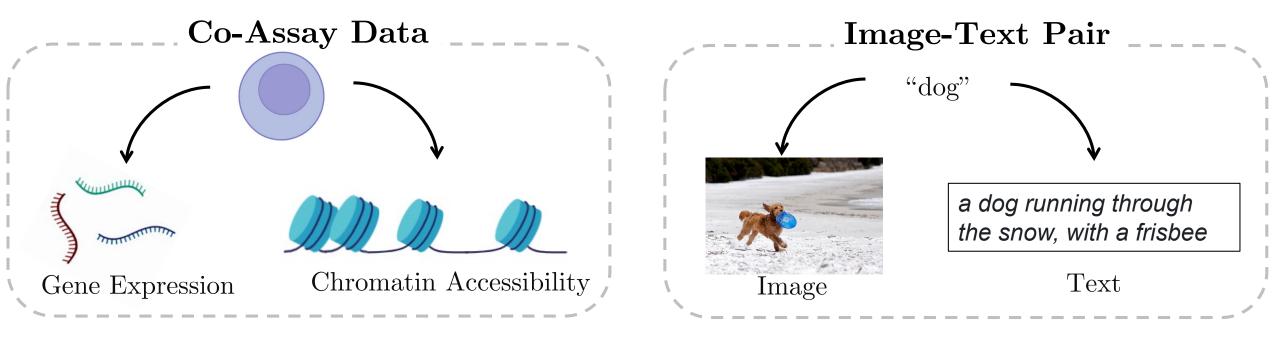
- + diverse cell population
- sensitive to technical/biological biases (e.g., mRNA degradation)

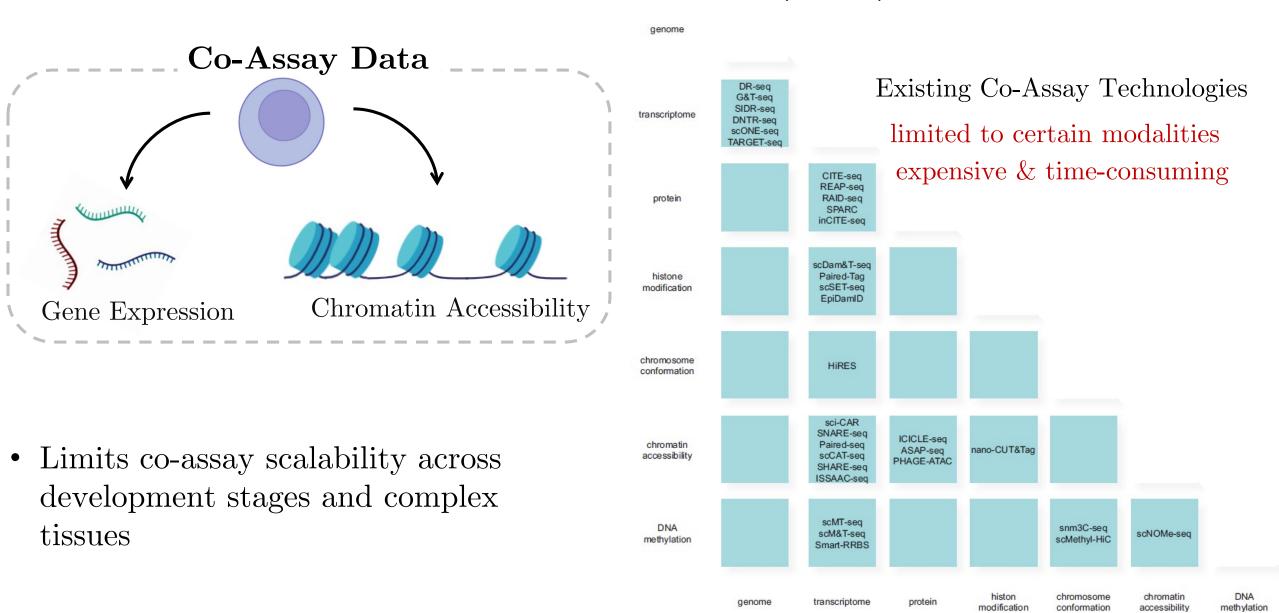
- + regulatory landscape
- less cell-type-specific (e.g., robust to mRNA level)

Integrating Multiple Modalities Provides Comprehensive Cell Profile

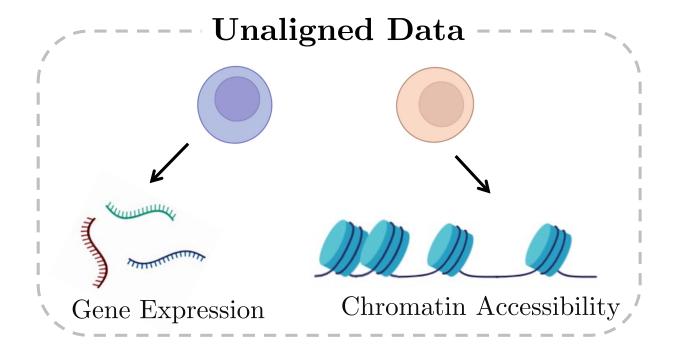
• Integration between different single-cell modalities





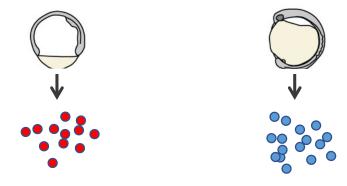


• Majority of temporal multi-modal datasets remain unaligned across modalities

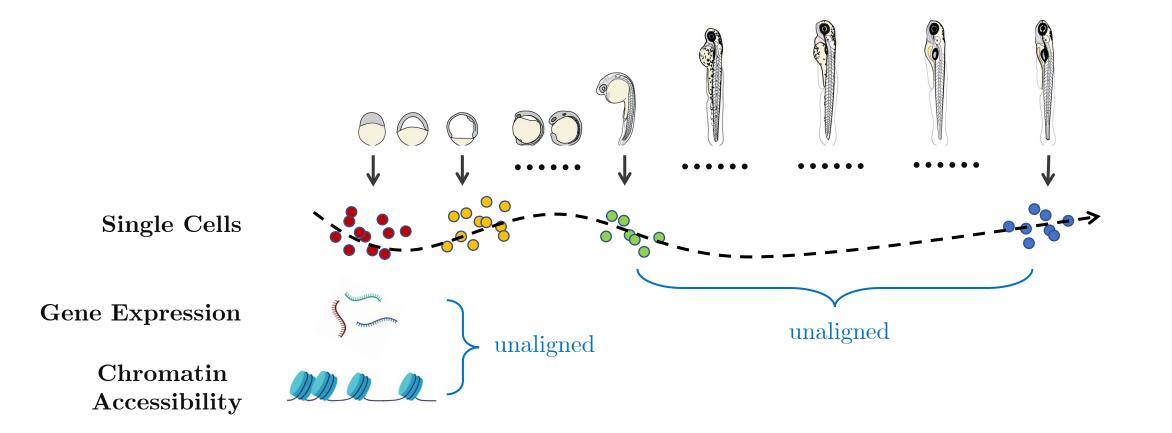


• Each modality is profiled on different sets of cells

• Different set of cells are measured at each timepoint (destruction of single-cell tech.)



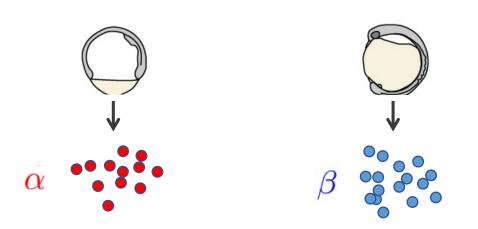
• Different set of cells are measured at each timepoint (destruction of single-cell tech.)



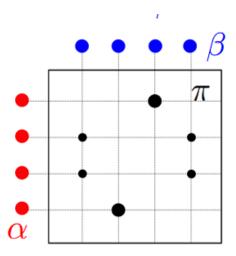
Problem I: unsupervised cell correspondence across modalities & timepoints

Unsupervised Cell Alignment Through Optimal Transport

- Problem I: unsupervised cell correspondence across modalities & timepoints
- Solution: cell alignment with optimal transport



Transport cost **D**Pair-wise distance between masses of two distributions $\mathbf{D}_{ij} = \parallel i - j \parallel_2 \text{ with } i \in \alpha \text{ and } j \in \beta$

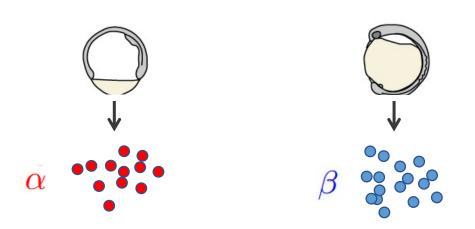


Transport plan π Mapping masses of two distributions

• Optimal transport find the best cell correspondence between two set of cells

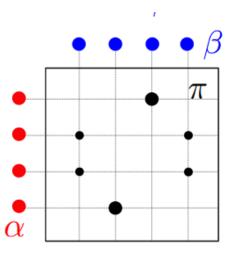
Unsupervised Cell Alignment Through Optimal Transport

- Problem I: unsupervised cell correspondence across modalities & timepoints
- Solution: cell alignment with optimal transport



Transport cost **D**Pair-wise distance between masses of two distributions $\mathbf{D}_{ij} = \parallel i - j \parallel_2 \text{ with } i \in \alpha \text{ and } j \in \beta$

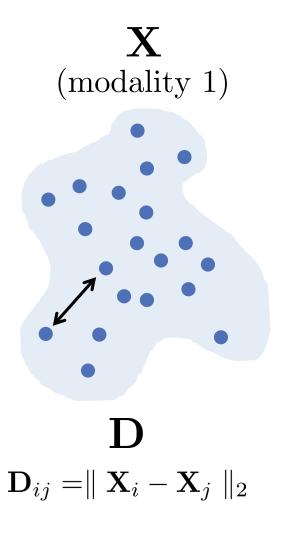
different modality has different feature space distance computation is inapplicable

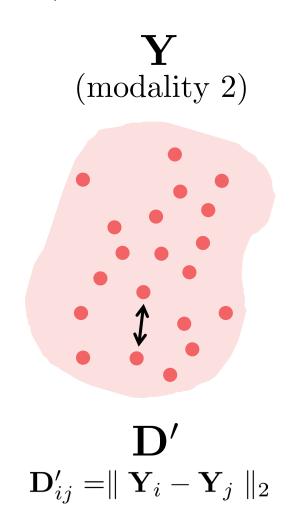


Transport plan π Mapping masses of two distributions

Unsupervised Cell Alignment Through Optimal Transport (cont.)

• We adopt Gromov-Wasserstein (GW) optimal transport to align cells across modalities

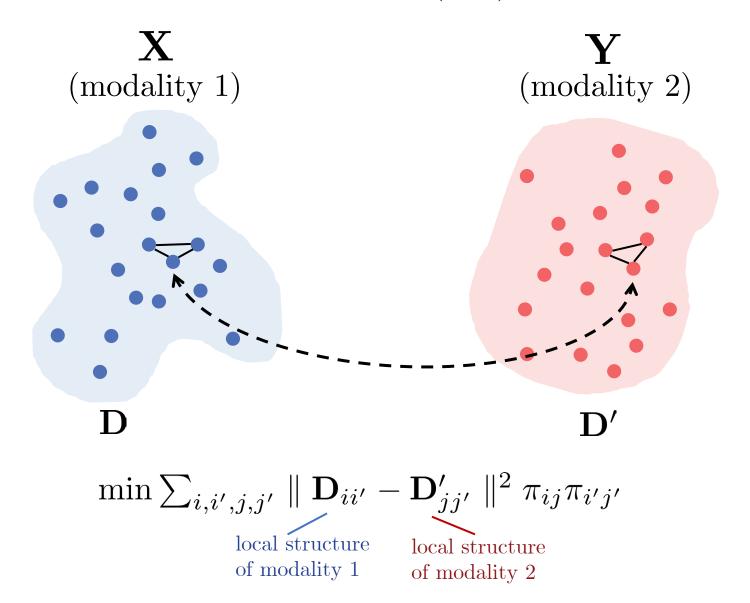




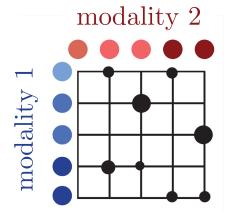
o Step 1: compute pair-wise distance within each modality

Unsupervised Cell Alignment Through Optimal Transport (cont.)

• We adopt Gromov-Wasserstein (GW) optimal transport



- o Step 1: compute pair-wise distance within each modality
- o Step 2: align two cells if they have similar local structures



Transport plan π Mapping cells of two modalities
while keeping local geometry

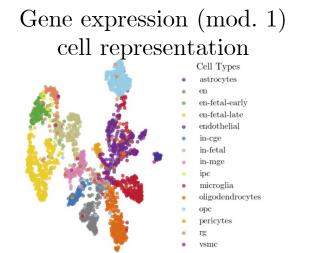
Existing Aligning Methods Overlook Underlying Cellular Dynamics

• Previous integration methods focus on separating different cell types and ignore the cell transition dynamics

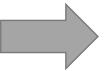
cell type separations

cell developmental trajectories (?)

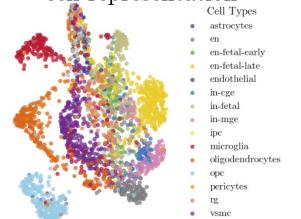
Integration of a SCOTv2



local cell cluster global cell dynamic



Chromatin accessibility (mod. 2) cell representation



Problem II: cellular dynamics are ignored during integration

[Demetci,, et. al., J. Comput. Biol., 2022] Cell Types astrocytes en-fetal-early en-fetal-late endothelial in-cge in-fetal in-mge ipc microglia oligodendrocytes

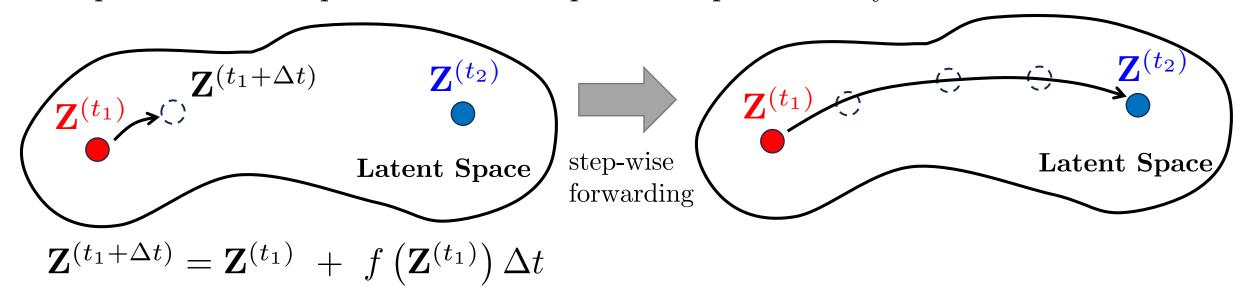
pericytes

vsmc

Existing Aligning Methods Overlook Underlying Cellular Dynamics (cont.)

(unsolved in previous works)

- Problem II: cellular dynamics are ignored during integration
- Solution: incorporate dynamics with differential equations
- Adopt differential equation in latent space to capture cell dynamics



• Adjust the latent space with cellular dynamics captured in modelling

Limitations of Existing Works

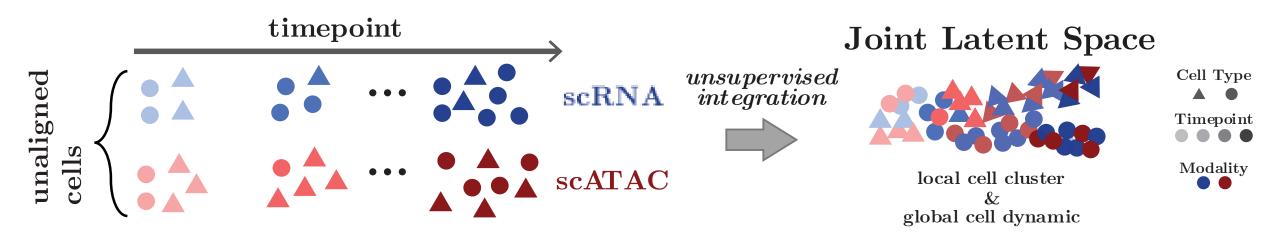
• **Problem I**: unsupervised cell correspondence across modalities & timepoints Solution: cell alignment with Gromov-Wasserstein Optimal Transport

• **Problem II:** cellular dynamics are ignored during integration Unsolved in previous works

Solution in our work: adjust the latent space with cellular dynamics

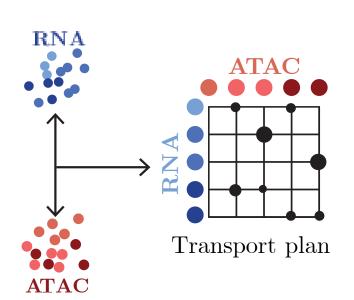
Limitations of Existing Works (cont.)

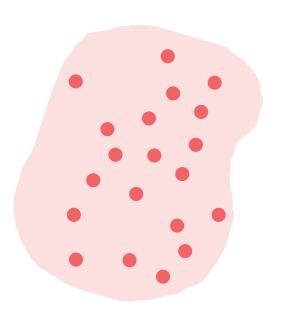
- Goal: during multi-modal single-cell integration, preserve both
 - o local cell relationships (e.g., cell type distinctions)
 - o global cellular dynamics (e.g., complex developmental trajectories)



(scRNA-seq: gene expression; scATAC-seq: chromatin accessibility)

• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment





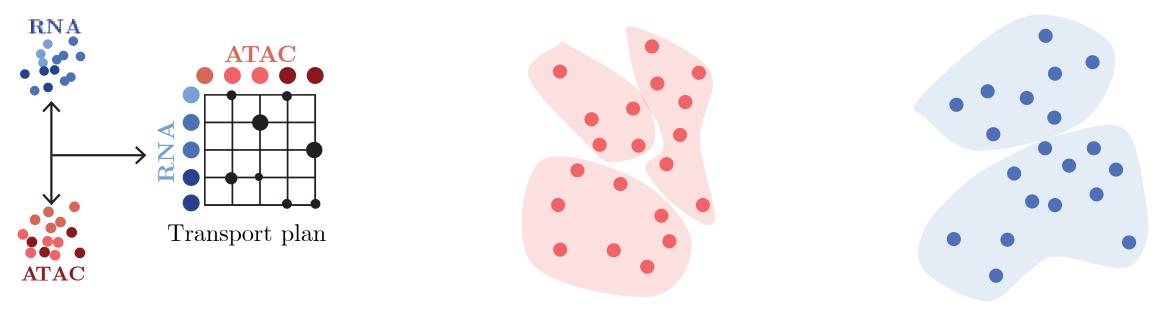


$$\min \sum_{i,i',j,j'} \| \mathbf{D}_{ii'} - \mathbf{D}'_{jj'} \|^2 \pi_{ij} \pi_{i'j'}$$

$$\underset{\text{of RNA cells}}{\text{local structure}} \quad \underset{\text{of ATAC cells}}{\text{local structure}}$$

exact GW is NP-hard expensive for large-scale single-cell data

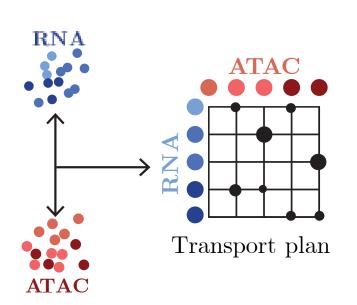
• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment

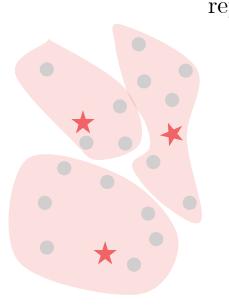


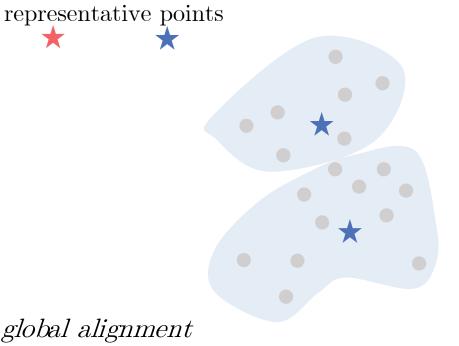
 $\min \sum_{i,i',j,j'} \| \mathbf{D}_{ii'} - \mathbf{D}'_{jj'} \|^2 \pi_{ij} \pi_{i'j'} \|^2$

divide-and-conquer strategy

• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment



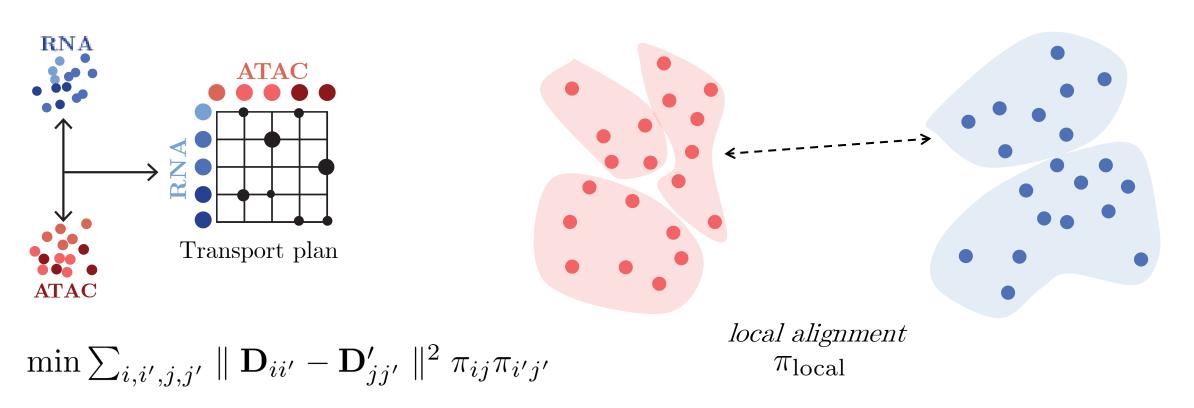




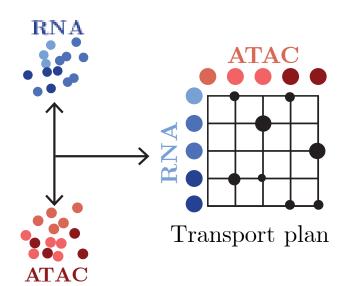
 $\min \sum_{i,i',j,j'} \| \mathbf{D}_{ii'} - \mathbf{D}'_{jj'} \|^2 \pi_{ij} \pi_{i'j'}$ distance of representative points

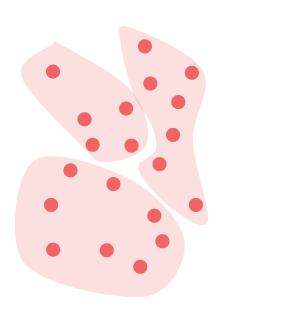
global alignment π_{global}

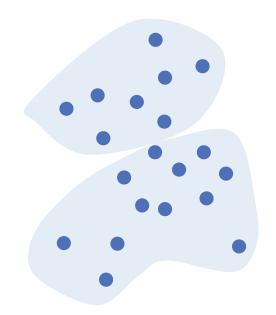
• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment



• Step I: uses Quantized Gromov-Wasserstein (QGW) to learn cross-modal cell alignment

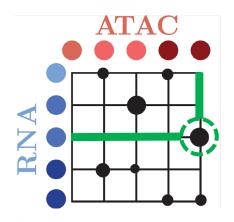




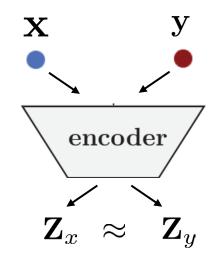


overall alignment = $\pi_{global} \times \pi_{local}$ significantly reduce time costs

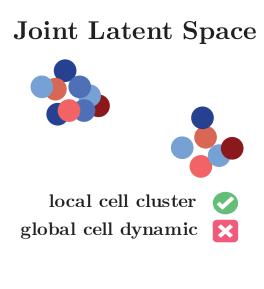
• Step II: mapping multi-modal cell profile to the joint latent space



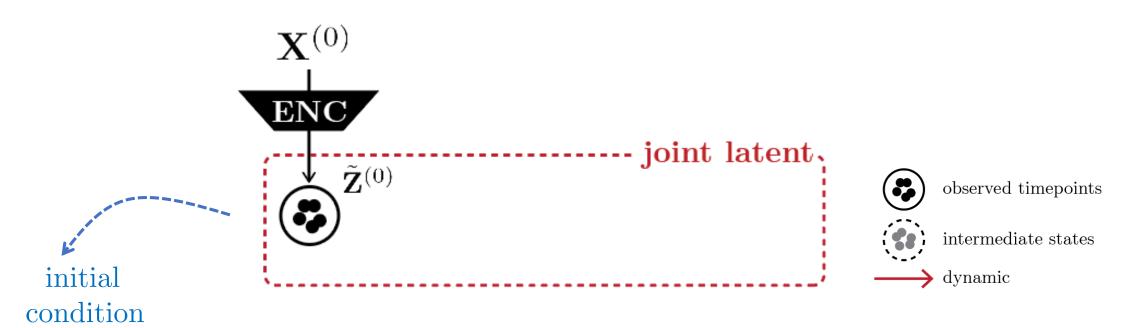
Assumption: biologically similar cells, despite being measured in different modalities, should stay close



 $\min \| \mathbf{Z}_x - \mathbf{Z}_y \|$ if x and y are aligned

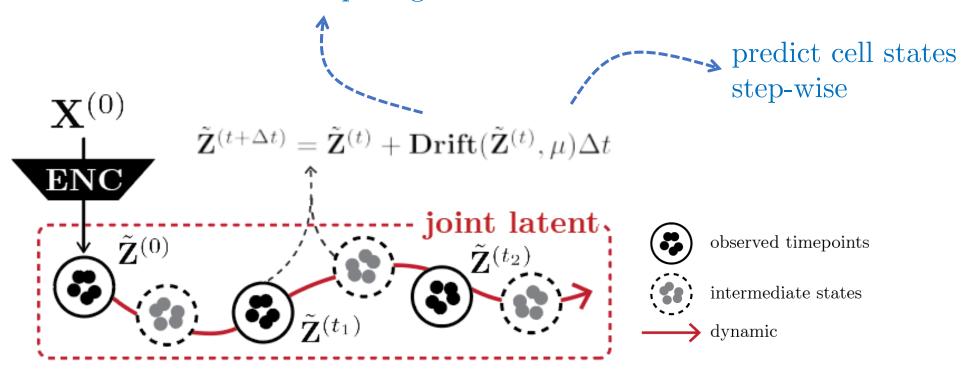


• Step III: incorporate cell dynamics with neural Ordinary Differential Equation (ODE)

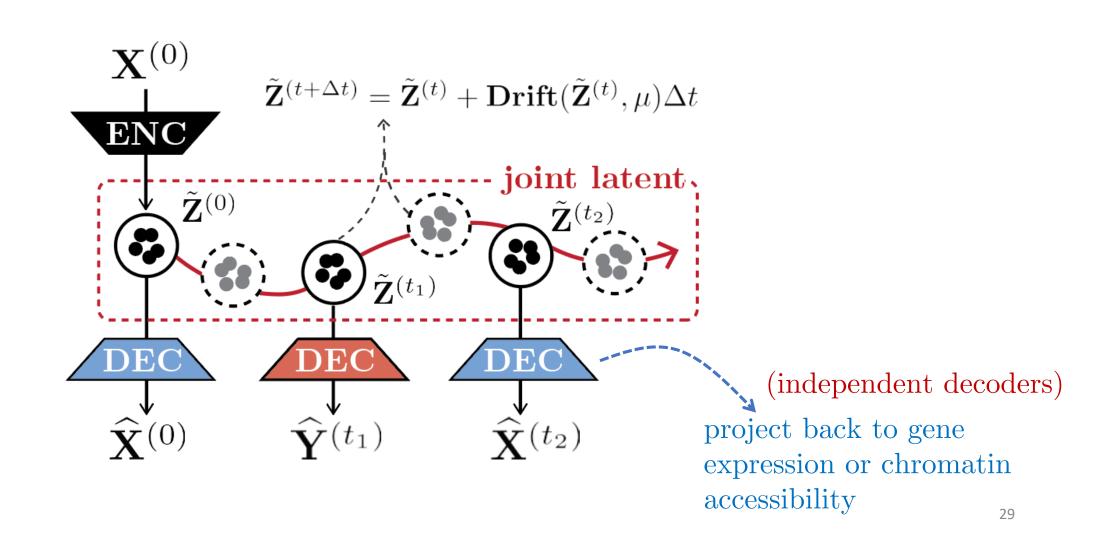


• Step III: incorporate cell dynamics with neural Ordinary Differential Equation (ODE)

neural network computing cell velocities



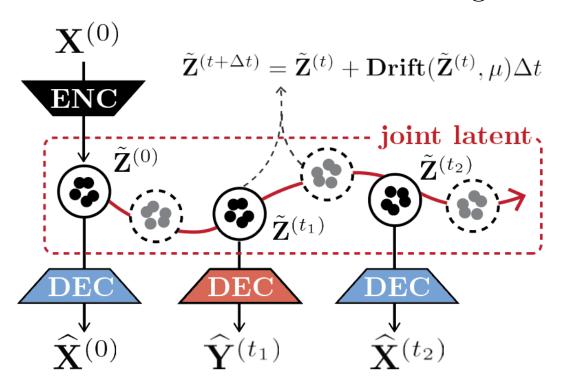
• Step III: incorporate cell dynamics with neural Ordinary Differential Equation (ODE)

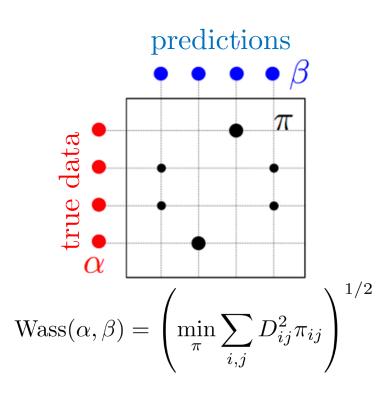


- Loss function: reconstruction loss + dynamic regularization
- Reconstruction loss:
 - o Use optimal transport distance as reconstruction loss
 - o Wasserstein distance between ground truth & predictions

$$\sum_{t \in \mathcal{T}} \operatorname{Wasserstein}(X^{(t)}, \widehat{X}^{(t)})$$

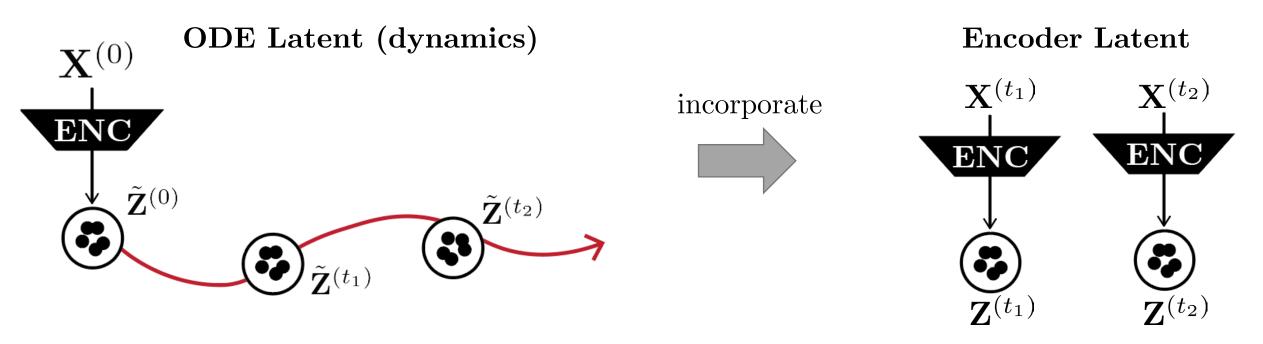
 $\sum_{t \in \mathcal{T}} \overset{\text{for ATAC}}{\text{Wasserstein}}(Y^{(t)}, \widehat{Y}^{(t)})$



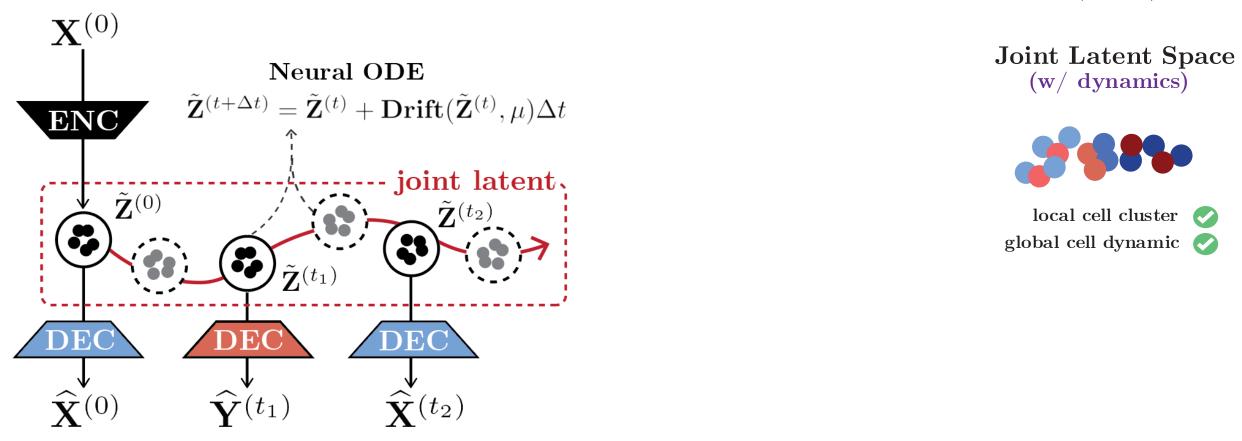


- Loss function: reconstruction loss + dynamic regularization
- Dynamic regularization:
 - o Enforces latent space to incorporate dynamics learned by neural ODE

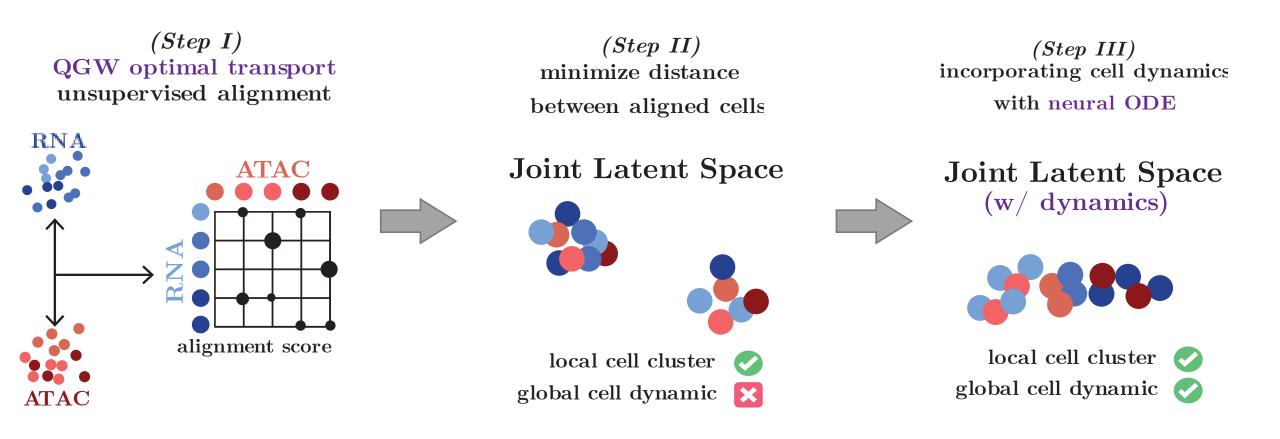
Wasserstein(Encoder latent, ODE latent) \rightarrow Wasserstein($\tilde{\mathbf{Z}}^{(t)}, \, \mathbf{Z}^{(t)}$)



• Step III: incorporate cell dynamics with neural Ordinary Differential Equation (ODE)



(Loss function: reconstruction loss + dynamic regularization)

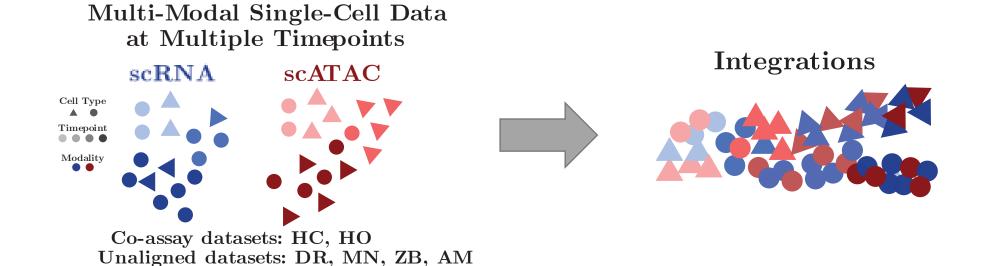


Experiment Setup

• Dataset: six multi-modal single-cell datasets

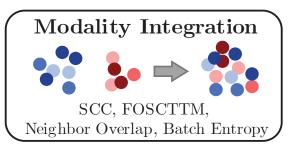
ID	Dataset	Species	# cells (RNA/ATAC)	# timepoints (RNA/ATAC)	Coassay	Source
HC	human cortex	$Homo\ sapiens$	2277/2277	10/10	Yes	[6]
НО	human organoid	$Homo\ sapiens$	10000/10000	11/11	Yes	[2]
DR	drosophila embryogenesis	Drosophila melanogaster	2738/4246	11/11	No	[1]
MN	mouse neocortex	Mus musculus	6098/1914	3/3	No	[5]
ZB	Zebrahub	Danio rerio	3692/9456	6/6	No	[3]
AM	amphioxus development	$Branchiostoma\ lanceolatum$	9630/3538	6/6	No	[4]

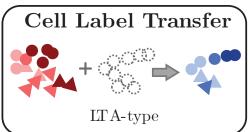
• Setup: temporally resolved multi-modal single-cell data integration

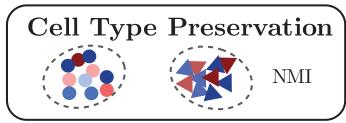


Experiment Setup

• Evaluation:

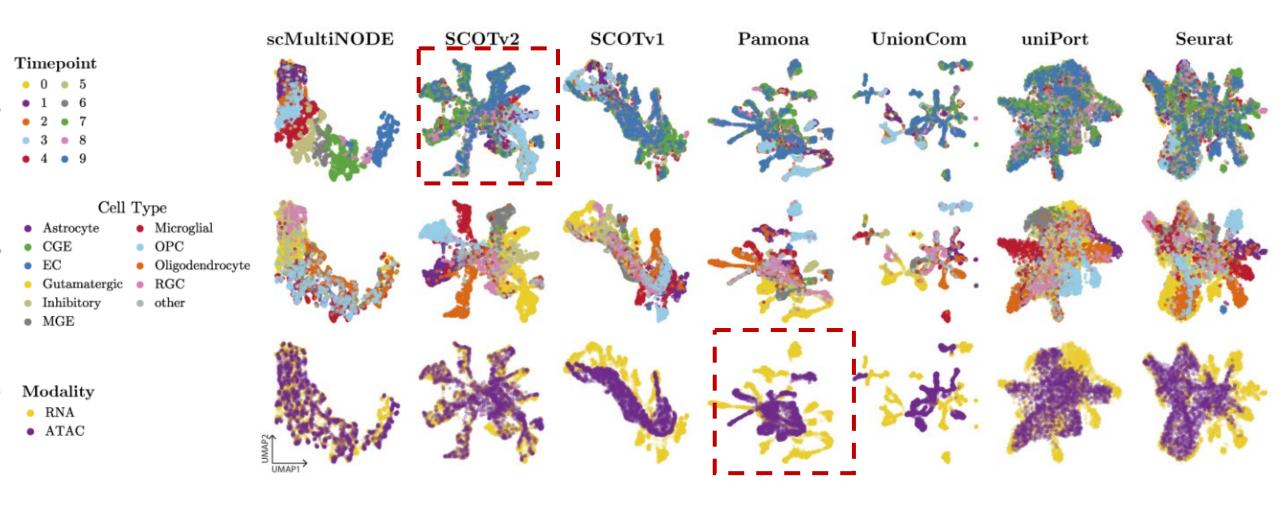






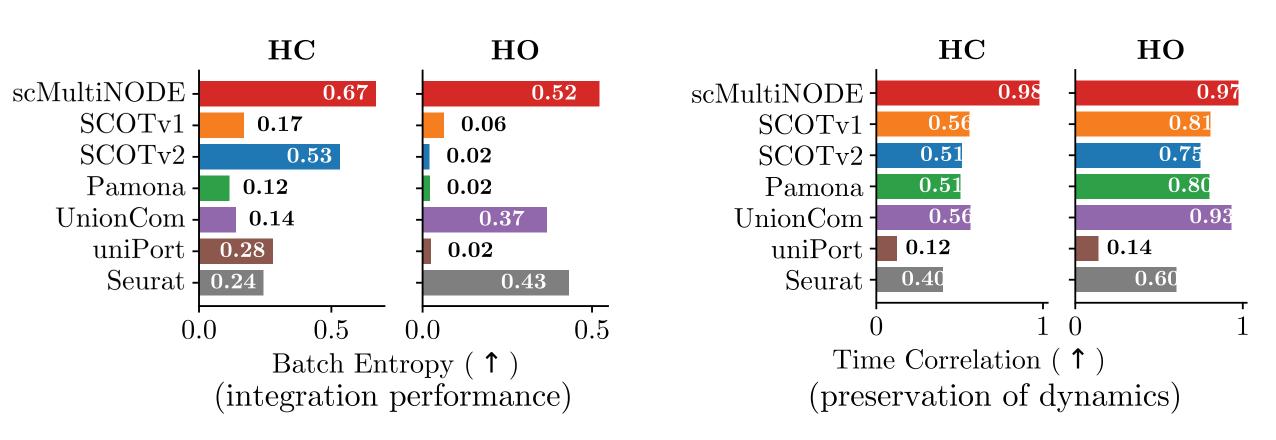
- Baselines: six state-of-the-art methods
 - o SCOTv1 [Demetci,, et. al., J. Comput. Biol., 2022]
 - o SCOTv2 [Demetci,, et. al., J. Comput. Biol., 2022]
 - o Pamona [Cao, et. al., Bioinformatics, 2022]
 - O UnionCom [Cao, et. al., Bioinformatics, 2020]
 - o uniport [Cao, et. al., Nat. Comm., 2022]
 - O Seurat [Hao, et. al., Nat. Biotech., 2024]

Experiment I: scMultiNODE captures cellular developmental dynamics during multi-modal integration



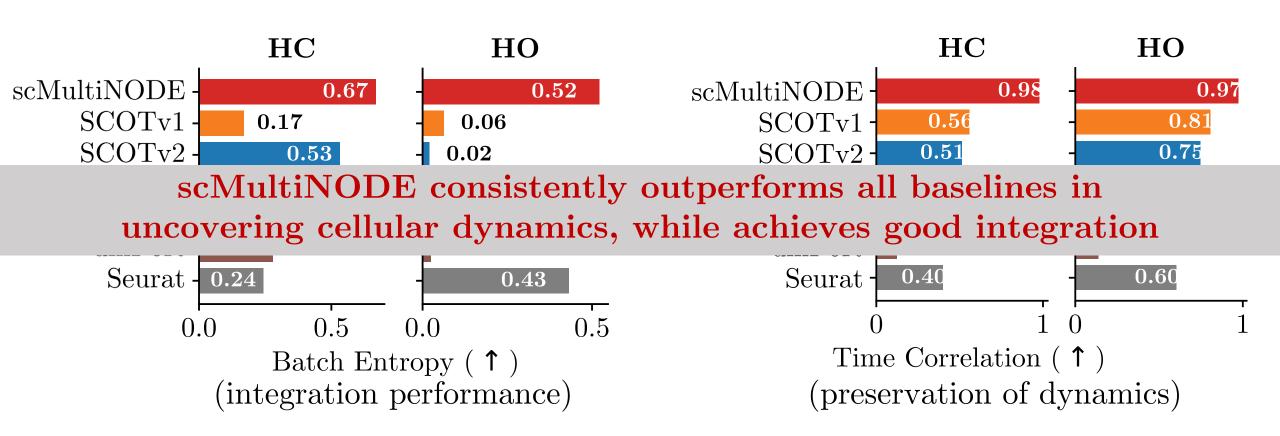
Experiment I: scMultiNODE captures cellular developmental dynamics during multi-modal integration (cont.)

• Human Cortex (HC) and Human Organoid (HO) as examples

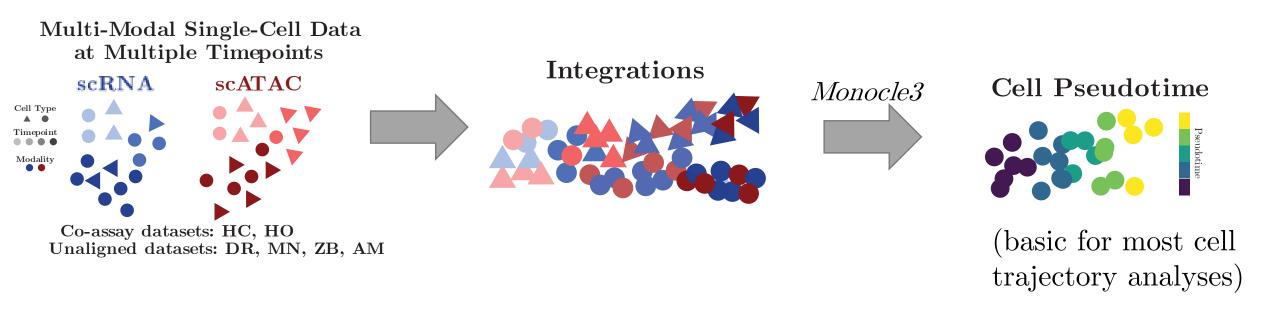


Experiment I: scMultiNODE captures cellular developmental dynamics during multi-modal integration (cont.)

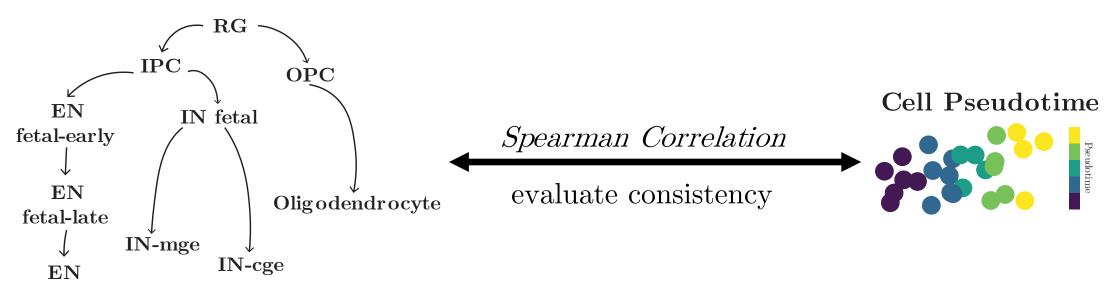
• Human Cortex (HC) and Human Organoid (HO) as examples



• **Setup**: predict cell pseudotime in the joint latent space

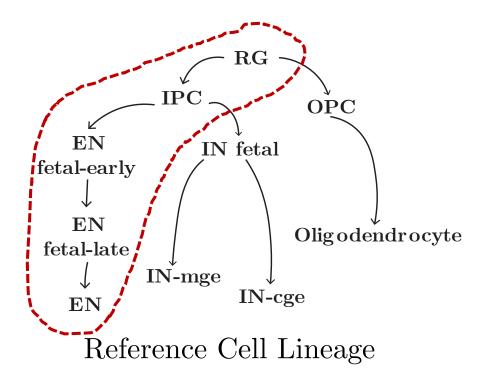


• Test on human brain cortex data

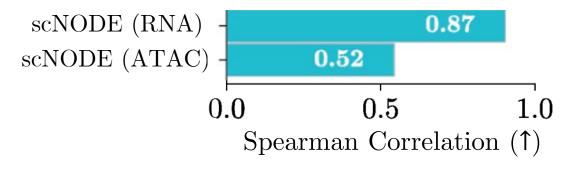


Reference Cell Lineage

• Test on human brain cortex data

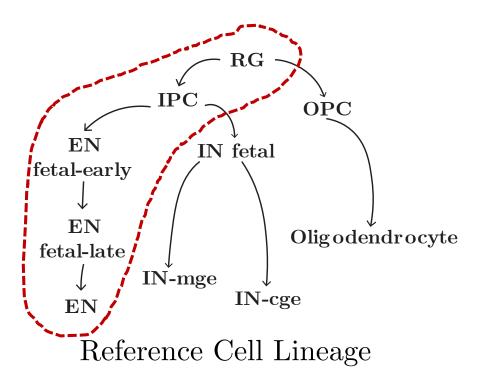


(**scNODE**: single-modal dynamic modelling) [Zhang,, et. al., *Bioinformatics.*, 2024]

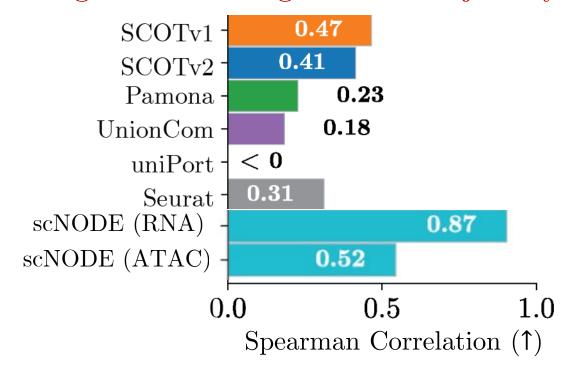


ATAC diminishes cell trajectories

• Test on human brain cortex data

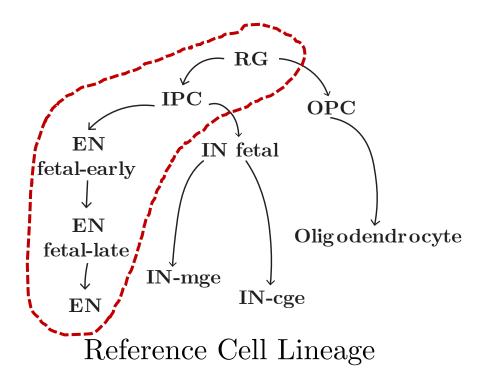


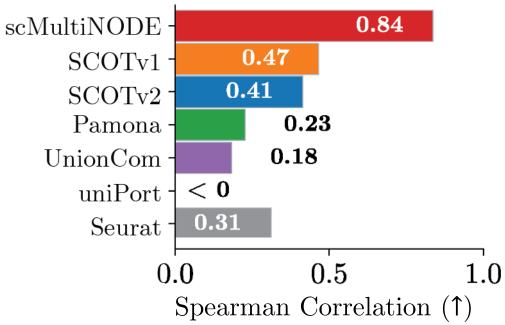
Integration vs. Single-modal trajectory



previous integration methods lose cell trajectories

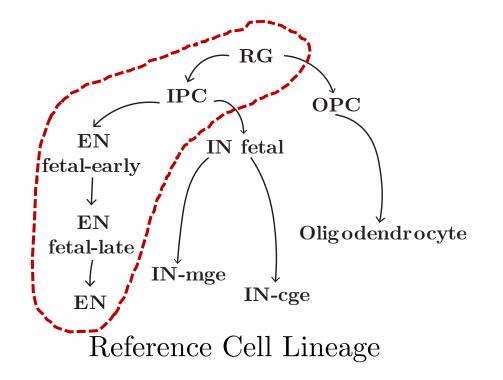
• Test on human brain cortex data



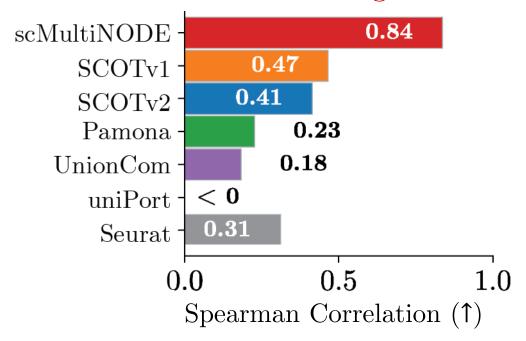


outperforms other multi-integration methods on capturing complex cell trajectories

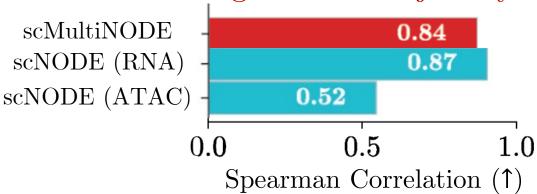
• Test on human brain cortex data

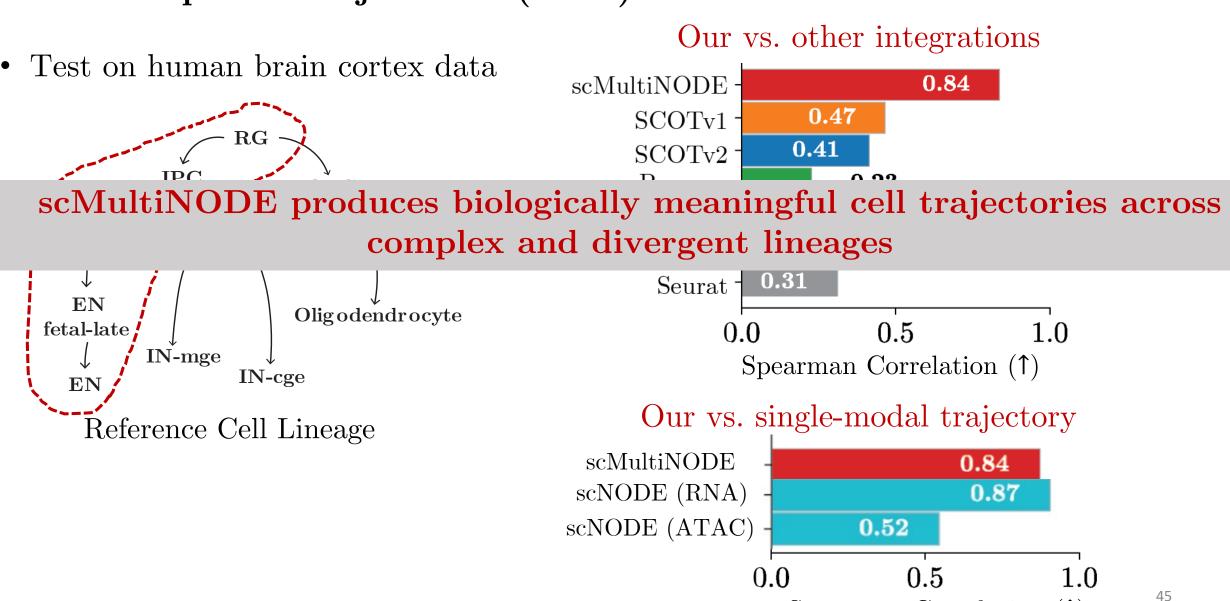


Our vs. other integrations



Our vs. single-modal trajectory

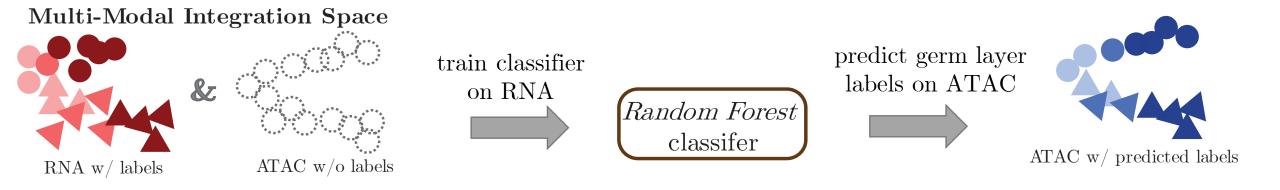




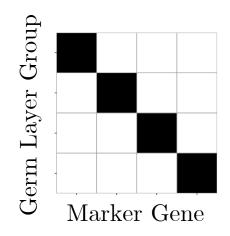
Spearman Correlation (1)

Experiment III: scMultiNODE enables germ layer label transfer across modalities

• Setup: germ layer label transfer across modalities



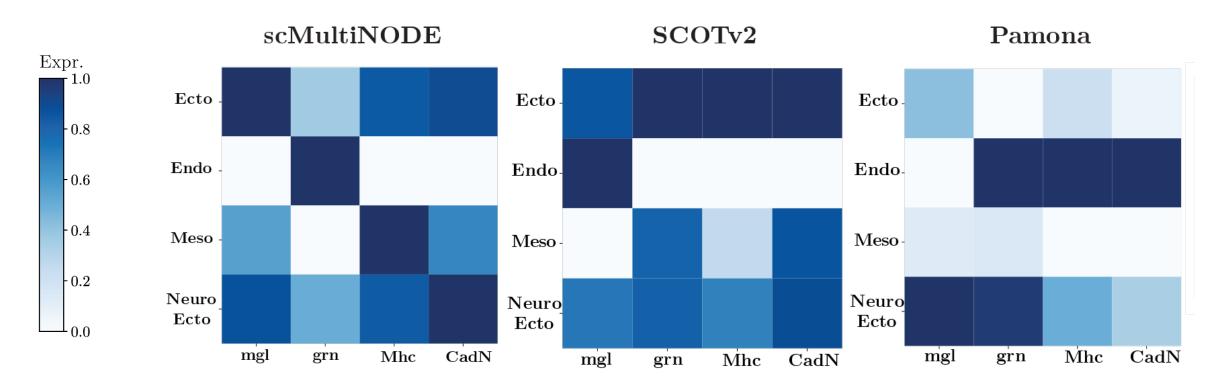
- Evaluation: marker gene expression across predicted germ layer groups
 - o find marker genes of each germ layer group from RNA modality
 - o check marker gene expression in ATAC modality with predicted labels



Expectation: marker genre only expressed in the corresponding group

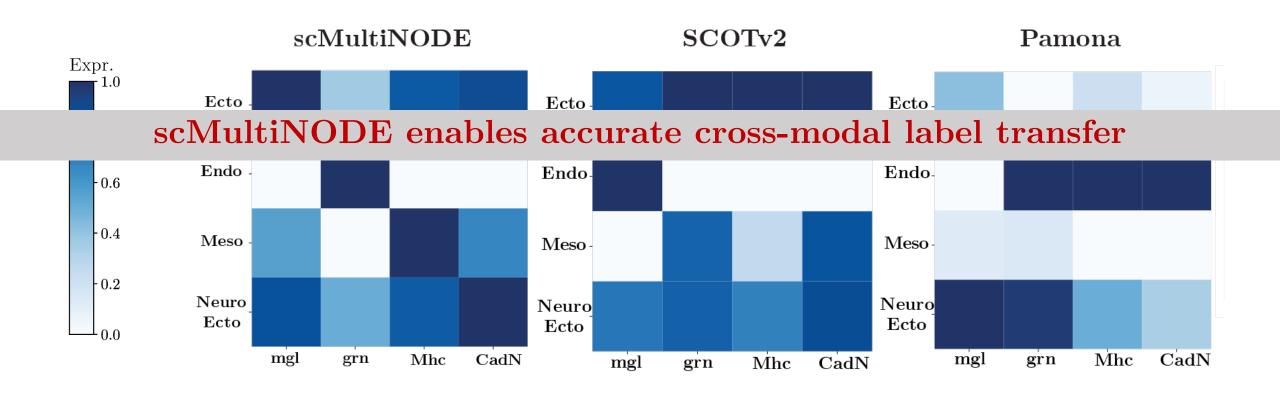
Experiment III: scMultiNODE enables germ layer label transfer across modalities

• Result on the *Drosophila embryogenesis* data



Experiment III: scMultiNODE enables germ layer label transfer across modalities

• Result on the *Drosophila embryogenesis* data



Takeaways

• scMultiNODE captures cellular dynamic while achieving good multi-modal integration

• scMultiNODE assists downstream analysis, including trajectory analysis and cross-modal label transfer

Jiaqi Zhang, Manav Chakravarthy, Ritambhara Singh,

"scMultiNODE: Integrative Model for Multi-Modal Temporal Single-Cell Data",

bioRxiv

Code availability: github.com/rsinghlab/scMultiNODE

Paper & Codes

Acknowledgement

Singh Lab @ Brown

Ritambhara Singh

Manav Chakravarthy
Ghulam Murtaza

