scMultiNODE: Temporal Single-Cell Data Integration across Unaligned Modalities

Jiaqi Zhang¹, Manav Chakravarthy¹, Ritambhara Singh^{1,2} ¹ Department of Computer Science, Brown University ² Center for Computational Molecular Biology, Brown University

Codes & Paper github.com/rsinghlab/scMultiNODE

Introduction

Problem

- Temporal scRNA-seq data are only profiled at discrete and sparsely spaced timepoints due to laborious and expensive lab experiments
- Obtaining different sequencing assays on the same cells across developmental stages is technically challenging

timepoint scRNAscATAC

unsupervised integration

Goal

- Integrate unaligned cell profiles from two modalities: gene expression and chromatin accessibility
- Retain both cell type variations & cellular dynamics during integration

Solution

- Auto-Encoders (AEs) learn complex latent representation and preserve cell type variations
- Gromov-Wasserstein (GW) Optimal Transport aligns cells across timepoints and modalities

Modality

ATAC

 $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$

timepoint

0 1 2 3 4 5 6 7 8 9

timepoint

——DE (on) ——random (on) ——random (out) ——DE (on) ——DE (out) ——random (on) ——random (on)

 $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$

timepoint

 $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$

timepoint

• Neural Ordinary Differential Equation (ODE) captures cellular dynamics

 $downstream\ analysis$

Cell Transition Path

joint latent.

Method: single-cell Multi-Modal Neural Ordinary Differnetial Equation (scMultiNODE)

Input (e.g., scRNA-seq + scATAC-seq)

- Gene expression $\mathbf{X}^{(t)}$ at measured timepoints $t \in \mathcal{T}_{RNA} \subset \{0, 1, \dots\}$
- Chromatin accessibility $\mathbf{Y}^{(t)}$ at measured timepoints $t \in \mathcal{T}_{ATAC} \subset \{0, 1, \dots\}$

Pamona

uniPort

Seurat

1.0

LTA-type (1)

(Cell Type Variation)

UnionCom

Advantage

- Quantization GW enables efficient alignment across large-scale multi-modal data
- Integrations capture both cell type variations and developmental dynamics

scMultiNODE Captures Cell Type Variations & Cellular Dynamics in Integration **Understanding Cell State Transition** scMultiNODESCOTv1 scMultiNODE · Glutamatergic 0.06 0.10 SCOTv2 0.17 0.03Timepoint 0.16 Pamona - 0.12 0.03UnionCom - 0.14 0.10 0.02uniPort - 0.28 Seurat - 0.24 $0.5 \quad 0.0$ Batch Entropy (↑) Oligodendrocyte (OL) Path HOscMultiNODE EC Oligodendrocyte 1.00 ¬ SLC1A3 Gutamatergic • RGC • SCOTv2 Inhibitory other MGE SCOTv1