scNODE: Generative Model for Temporal Single Cell Transcriptomic Data Prediction

Jiaqi Zhang¹, Erica Larschan^{2,3}, Jeremy Bigness², Ritambhara Singh^{1,2}

¹ Department of Computer Science, Brown University ² Center for Computational Molecular Biology, Brown University ³ Department of Molecular Biology, Cell Biology and Biochemistry, Brown University

Introduction

Problem: Temporal scRNA-seq data are only profiled at discrete and sparsely spaced timepoints due to laborious and expensive lab experiments

Goal: Predict gene expression at unmeasured timepoints

Limitation of previous works

- Linear dimensionality reduction, incapable to capture compex cell structure
- Fixed latent space obtained from measured timepoints, limiting predictions at unmeasured timepoints

Solution: VAE for latent representation learning + ODE for dynamic modelling + regularization for adjusting latent with overall dynamics

Acknowledgement

This work is supported by National Institute of Health (NIH) award 1R35HG011939-01.

Paper & Codes

github.com/rsinghlab/scNODE

Method: single-cell Neural Ordinary Differnetial Equation (scNODE)

Input: Gene expression $\mathbf{X}^{(t)}$ at measured timepoints $t \in \mathcal{T}$

Stage I: Pre-train VAE to learn a latent space preserving structural relationships of observed cells

Stage II: Model cell developmental dynamics in the latent space with neural ODE

Output: Gene expression at any timepoint

Advantages:

- Non-linearity of VAE captures complex cell structural relationship
- Adjusting latent space with cellular dynamics, improving generalizability

Results Dataset & Preprocessing • six real-world scRNA-seq datasets of various tissues and # of timepoints • 2000 HVGs —— cell total count normalization —— log-transformation • preprocessing based on training timepoints to avoid data leakage scNODE accurately predicts expression at unmeasured timepoints leave-out middle timepoints (interpolation) or last few timepoints (extrapolation) scNODE assists with perturbation analysis transition path — differentially expressed genes scNODE predictions help recover cell trajectories After Removal W/ Prediction $\mathcal{G}_{ ext{removal}}$ Ipsen-Mikhailov distance: $IM(\mathcal{G}_{true}, \mathcal{G}_{pred}) < IM(\mathcal{G}_{true}, \mathcal{G}_{removal})$