scNODE: Generative Model for Temporal Single Cell Transcriptomic Data Prediction
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Introduction Method: single-cell Neural Ordinary Difternetial Equation (scNODE) Results
Problem: Temporal scRNA-seq data are only protiled at | () | | Dataset & Preprocessing
discrete and sparsely spaced timepoints due to laborious Input: Gene expression X \*) at measured timepoints ¢ & 7T e six real-world scRNA-seq datasets of various tissues and # of timepoints
and expensive lab experiments e 2000 HVGs —— cell total count normalization —— log-transformation

Stage I: Pre-train VAE to learn a latent space preserving structural relationships of observed cells

-----
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Goal: Predict gene expression at unmeasured timepoints
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latent space scNODE assists with perturbation analysis
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Limitation of previous works
e Linear dimensionality reduction, incapable to capture
compex cell structure
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e Fixed latent space obtained from measured timepoints, . \ \ S0
limiting predictions at unmeasured timepoints —> dynamic 2 *\:_‘;" # 027
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with overall dynamics sC(NODE predictions help recover cell trajectories
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Advantages . gt rue gremova,l gpred
' e Non-linearity of VAE captures complex cell structural relationship Ipsen-Mikhailov distance: IM(Gerues Gored) < IM(Girues Gremoval)

sithub.com/rsinghlab/scNODE o Adjusting latent space with cellular dynamics, improving generalizability




