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Introduction
Problem: Temporal scRNA-seq data are only profiled at discrete 
and sparsely spaced timepoints due to laborious and expensive 
lab experiments

Solution: 

Goal: Predict gene expression at unmeasured timepoints 

timepointmeasured unmeasured

each measurement is a gene expression matrix

Deep generative model

predict unmeasured 
   gene expression

Limitation of previous works
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Paper & Codes

Method: single-cell Neural Ordinary Differnetial Equation (scNODE) 
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Loss = Wasserstein(truth, reconstruction) + 
          Wasserstein(structural latent, dynamic manifold)

Stage I: Pre-train VAE to learn a latent space preserving structural relationships 

Input: Gene expression           at measured timepoints  

encoder decoder

Loss = MSE + KL

Stage II: Model cell developmental dynamics in the latent space with neural ODE  

Advantages: 

Output: Gene expression at any timepoint  

Results

scNODE assists with perturbation analysis

scNODE accurately predicts expression at unmeasured timepoints

Dataset & Preprocessing
• three real-world scRNA-seq datasets of various tissues and # of timepoints

• 2000 HVGs cell total count normalization log-transformation

scNODE predictions help recover cell trajectories

leave-out middle timepoints (interpolation) and last few timepoints (extrapolation)

• preprocessing based on training timepoints to avoid data leakage

Ipsen-Mikhailov distance (↓) :

transition path differentially expressed genes simulation

• VAE for complex latent representation learning

• Neural ODE for cellular dynamic modelling

• Dynamic regularization for adjusting latent with overall dynamics 

• Fixed latent space obtained from measured timepoints, limiting 
   predictions at unmeasured timepoints that have the distribution 
   shift issue

• Linear dimensionality reduction, incapable to capture  compex
    cell structure

Dynamic regularization:   

• Enforces latent space to incorporate dynamics learnd by neural ODE

• Learns a latent space that is robust to distribution shift

• Non-linearity of VAE captures complex cell structural relationship 

• Updating latent space with dynamic regularization improves generalizability 
    and robustness against distribution shifts

scNODE is robust aginst distribution shifts
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(Distribution Shift: distance between testing and training data)


