scNODE: Generative Model for Temporal Single Cell Transcriptomic Data Prediction
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: Results
Introduction Method: single-cell Neural Ordinary Differnetial Equation (scNODE)

Problem: Temporal scRNA-seq data are only profiled at discrete
and sparsely spaced timepoints due to laborious and expensive
lab experiments

Dataset & Preprocessing

, . . o three real-world scRNA-seq datasets of various tissues and # of timepoints
Input: Gene expression X(t) at measured timepoints { € T

e 2000 HVGs =—— cell total count normalization ——— log-transformation

D measured ! unmeasured : : , , , , . . . .
o timepoint Stage I: Pre-train VAE to learn a latent space preserving structural relationships e preprocessing based on training timepoints to avoid data leakage

@ ¢ OO Z fal
_________________ - - SRR | X 11— | encoder decoder ﬁALL scNODE accurately predicts expression at unmeasured timepoints
each measurement is a gene expression matrix
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leave-out middle timepoints (interpolation) and last few timepoints (extrapolation)

Wasserstein Distance ()

Goal: Predict gene expression at unmeasured timepoints BrTTmomerrrmosssessooosenennooees Loss = MSE 4 KL---rrrrrrmmozzmemmmmmmrenonooazeeens Method Interpolation Extrapolation
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predictions at unmeasured timepoints that have the distribution ceoaer ceoaet ceOaet (Distribution Shift: distance between testing and training data)
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Solution: . : :
scNODE predictions help recover cell trajectories
e VAE for complex latent representation learning Loss — Wasserstein(truth, reconstruction) + time Origginal gAfter Removal scé\IODE Prediction MéOFlow Prediction PRQESCIENTIIK/}E%Clt(i)(;n Ps
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Dynamic regularization: 1?
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scNODE assists with perturbation analysis
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e Updating latent space with dynamic regularization improves generalizability L -0 3 2 1 0 1 2 3
. . . . . Perturbation Level (logig)
and robustness against distribution shifts
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e Non-linearity of VAE captures complex cell structural relationship
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transition path —— differentially expressed genes =—=  simulation

github.com/rsinghlab/scNODE




