scNODE: Generative Model for Temporal Single Cell Transcriptomic Data Prediction

Jiaqi Zhang¹, Erica Larschan^{2,3}, Jeremy Bigness², Ritambhara Singh^{1,2}

Center for
Computational
Molecular Biology

¹ Department of Computer Science, Brown University ² Center for Computational Molecular Biology, Brown University

³ Department of Molecular Biology, Cell Biology and Biochemistry, Brown University

Introduction

Problem: Temporal scRNA-seq data are only profiled at discrete and sparsely spaced timepoints due to laborious and expensive lab experiments

Goal: Predict gene expression at unmeasured timepoints

Limitation of previous works

- Linear dimensionality reduction, incapable to capture compex cell structure
- Fixed latent space obtained from measured timepoints, limiting predictions at unmeasured timepoints that have the distribution shift issue

Solution:

- VAE for complex latent representation learning
- Neural ODE for cellular dynamic modelling
- Dynamic regularization for adjusting latent with overall dynamics

Acknowledgement

This work is supported by National Institute of Health (NIH) award 1R35HG011939-01.

Paper & Codes

github.com/rsinghlab/scNODE

Method: single-cell Neural Ordinary Differnetial Equation (scNODE)

Input: Gene expression $\mathbf{X}^{(t)}$ at measured timepoints $t \in \mathcal{T}$

Stage I: Pre-train VAE to learn a latent space preserving structural relationships

Stage II: Model cell developmental dynamics in the latent space with neural ODE

Dynamic regularization:

- Enforces latent space to incorporate dynamics learnd by neural ODE
- Learns a latent space that is robust to distribution shift

Output: Gene expression at any timepoint

Advantages:

- Non-linearity of VAE captures complex cell structural relationship
- Updating latent space with dynamic regularization improves generalizability and robustness against distribution shifts

Results

Dataset & Preprocessing

- three real-world scRNA-seq datasets of various tissues and # of timepoints
- 2000 HVGs cell total count normalization log-transformation
- preprocessing based on training timepoints to avoid data leakage

scNODE accurately predicts expression at unmeasured timepoints

leave-out middle timepoints (interpolation) and last few timepoints (extrapolation)

Method	Wasserstein Distance (↓)							
	Interpolation				Extrapolation			
	t = 5	t = 7	t = 9	t = 11	t = 15	t = 16	t = 17	t = 18
scNODE	55.22	59.89	103.26	140.81	132.86	148.89	137.90	151.13
MIOFlow	55.07	61.80	108.72	156.51	162.12	191.40	189.39	215.74
PRESCIENT	85.36	87.47	114.16	142.03	<u>150.53</u>	<u>161.59</u>	147.23	<u>155.06</u>

scNODE is robust aginst distribution shifts

(Distribution Shift: distance between testing and training data)

scNODE predictions help recover cell trajectories

Ipsen-Mikhailov distance (\downarrow): $\mathrm{IM}(\mathcal{G}_{\mathrm{true}}, \mathcal{G}_{\mathrm{pred}}) < \mathrm{IM}(\mathcal{G}_{\mathrm{true}}, \mathcal{G}_{\mathrm{removal}})$

scNODE assists with perturbation analysis

