scMultiNODE: Temporal Single-Cell Data Integration across Unaligned Modalities

Jiaqi Zhang¹, Manav Chakravarthy¹, Ritambhara Singh^{1,2}

¹ Department of Computer Science, Brown University

² Center for Computational Molecular Biology, Brown University

Codes & Paper github.com/rsinghlab/scMultiNODE

Problem

- Temporal scRNA-seq data are only profiled at discrete and sparsely spaced timepoints due to laborious and expensive lab experiments
- Obtaining different sequencing assays on the same cells across developmental stages is technically challenging

Integrate unaligned cell profiles from two modalities: gene expression and chromatin accessibility

• Retain both cell type variations & cellular dynamics during integration

Method: single-cell Multi-Modal Neural Ordinary Differnetial Equation (scMultiNODE)

Input (e.g., scRNA-seq + scATAC-seq)

- Gene expression $\mathbf{X}^{(t)}$ at measured timepoints $t \in \mathcal{T}_{RNA} \subset \{0, 1, \cdots\}$
- Chromatin accessibility $\mathbf{Y}^{(t)}$ at measured timepoints $t \in \mathcal{T}_{ATAC} \subset \{0, 1, \dots\}$

Advantage

- Quantization GW enables efficient alignment across large-scale multi-modal data
- Integrations capture both cell type variations and developmental dynamics

Goal

Stage II: Align modalities with GW Optimal Transport

Stage III: Incorporate cellular dynamics with Neural ODE

scMultiNODE Captures Cell Type Variations & Cellular Dynamics in Integration

• SCOTv2 0.06UnionCom Seurat

high-dim. and sparse single-cell data

mesoderm predict labels on ATAC neuroectoderm validate with marker genes

neuroectoderm

This project was funded by the National Institutes of Health (NIH) award 1R35HG011939-01.